HU, Probability Theory Fall 2015, Problems 4 (30.9.2015)

1. Prove that if \mathbb{P} is a probability measure on $\Omega = \mathbb{R}^d$ equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$, every Borel set $B \in \mathcal{B}(\mathbb{R}^d)$ satisfies the following **Approximation Property** : for every $\varepsilon > 0$ there is an open set $U \subseteq \mathbb{R}^d$ and a closed set $C \subseteq \mathbb{R}^d$ such that $U \supseteq B \supseteq C$ and $\mathbb{P}(U \setminus C) \leq \varepsilon$.

To show that consider the class of events

- $\mathcal{D} = \{B \in \mathcal{B}(\mathbb{R}^d) \text{ which has the Approximation property } \} \subseteq \mathcal{B}(\mathbb{R}^d).$
 - Show first that the class

$$\mathcal{C} = \{ C \subseteq \mathbb{R}^d, C \text{ closed } \} \subset \mathcal{D}$$

and it is a π -class (closed under intersections).

Hint if C is closed, let $C^{\varepsilon} = \{ y : \exists x \in C \text{ with } |x - y| < \varepsilon \} \supseteq C$ Show that C^{ε} is open and

$$C = \bigcap_{n \in \mathbb{N}} C^{1/n}$$

Use the σ -addivity of \mathbb{P} to show that C has the Approximation propery.

- Then show that \mathcal{D} is a Dynkin class.
- Use Dynkin lemma to conclude that all Borel sets have the Approximation property.
- Prove also that when $B \in \mathcal{B}(\mathbb{R}^d)$ is a Borel set, $\forall \varepsilon > 0$ one can find an open set U and a compact set K with $U \ge B \ge K$ and $\mathbb{P}(U \setminus K) < \varepsilon$.

Remark We have used the Approximation property of the Borel sets in the proof of Kolmogorov extension Theorem.

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ a non-decreasing function, $f(s) \leq f(t)$ when $s \leq t$. Show that f is Borel measurable, which means that for every Borel set $B \in \mathcal{B}(\mathbb{R})$, the counterimage $f^{-1}(B) := \{ t : f(t) \in B \}$ is a Borel set.
- 3. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(A_n : n \in \mathbb{N})$ be any sequence of pairwise disjoint events, which means $A_i \cap A_j = \emptyset$ when $i \neq j$. Show that $\lim_{n \to \infty} \mathbb{P}(An) = 0$.

4. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(A_{\alpha}, \alpha \in I)$ be a family of pairwise disjoint events, indexed by an index set I. Show that if $\mathbb{P}(A_{\alpha}) > 0$ $\forall \alpha \in I$, then I must be countable.

Hint: show that $\forall n \in \mathbb{N}$ the set $\{\alpha : \mathbb{P}(A_{\alpha} > 1/n\}$ is finite.

5. Let P a probability on $\Omega = \mathbb{R}$ equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$. We have shown the *cumulative distribution function* $F(t) = P((-\infty, t])$ is right-continuous, which means

$$F(t+) = \lim_{u \downarrow t} F(u) = F(t) \quad \forall t \in \mathbb{R}$$

Denote the jump size of F at t by $\Delta F(t) = F(t) - F(t-)$ where $F(t-) = \lim_{s \uparrow t} F(s)$ is the limit from the left.

- (a) Show that $P(\{t\}) = \Delta F(t)$.
- (b) Show that the set $\{ t \in \mathbb{R} : \Delta F(t) > 0 \}$ is at most a countable set.
- 6. Suppose a function $F : \mathbb{R} \to [0, 1]$ is given by

$$F(t) = \sum_{n=1}^{\infty} 2^{-n} \mathbf{1}(t \ge 1/n)$$

(a) Show that F(t) the cumulative distribution function of a probability P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

For such P, compute the probabilities of the following events:

- $A = [1, \infty),$
- $B = [1/10, \infty),$
- $C = \{ 0 \},$
- D = [0, 1/2),
- $E = (-\infty, 0),$
- $G = (0, \infty)$.
- (b) Define a random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ of your choice, with a probability \mathbb{P} of your choice, such that the distribution $\mathbb{P}(\{\omega : X(\omega) \le t\}) = F(t)$.

Hint: you can always define the random variable as the identity map in the space where it takes values, in this case \mathbb{R} equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.