HU, Probability Theory Fall 2015, Problems 4 (30.9.2015)

1. Prove that if \mathbb{P} is a probability measure on $\Omega=\mathbb{R}^{d}$ equipped with the Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{d}\right)$, every Borel set $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ satisfies the following Approximation Property : for every $\varepsilon>0$ there is an open set $U \subseteq \mathbb{R}^{d}$ and a closed set $C \subseteq \mathbb{R}^{d}$ such that $U \supseteq B \supseteq C$ and $\mathbb{P}(U \backslash C) \leq \varepsilon$.
To show that consider the class of events
$\mathcal{D}=\left\{B \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right.$ which has the Approximation property $\} \subseteq \mathcal{B}\left(\mathbb{R}^{d}\right)$.

- Show first that the class

$$
\mathcal{C}=\left\{C \subseteq \mathbb{R}^{d}, C \text { closed }\right\} \subset \mathcal{D}
$$

and it is a π-class (closed under intersections).
Hint if C is closed, let $C^{\varepsilon}=\{y: \exists x \in C$ with $|x-y|<\varepsilon\} \supseteq C$ Show that C^{ε} is open and

$$
C=\bigcap_{n \in \mathbb{N}} C^{1 / n}
$$

Use the σ-addivity of \mathbb{P} to show that C has the Approximation propery.

- Then show that \mathcal{D} is a Dynkin class.
- Use Dynkin lemma to conclude that all Borel sets have the Approximation property.
- Prove also that when $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ is a Borel set, $\forall \varepsilon>0$ one can find an open set U and a compact set K with $U \geq B \geq K$ and $\mathbb{P}(U \backslash K)<\varepsilon$.

Remark We have used the Approximation property of the Borel sets in the proof of Kolmogorov extension Theorem.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a non-decreasing function, $f(s) \leq f(t)$ when $s \leq t$. Show that f is Borel measurable, which means that for every Borel set $B \in \mathcal{B}(\mathbb{R})$, the counterimage $f^{-1}(B):=\{t: f(t) \in B\}$ is a Borel set.
3. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(A_{n}: n \in \mathbb{N}\right)$ be any sequence of pairwise disjoint events, which means $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$. Show that $\lim _{n \rightarrow \infty} \mathbb{P}(A n)=0$.
4. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left(A_{\alpha}, \alpha \in I\right)$ be a family of pairwise disjoint events, indexed by an index set I. Show that if $\mathbb{P}\left(A_{\alpha}\right)>0$ $\forall \alpha \in I$, then I must be countable.
Hint: show that $\forall n \in \mathbb{N}$ the set $\left\{\alpha: \mathbb{P}\left(A_{\alpha}>1 / n\right\}\right.$ is finite .
5. Let P a probability on $\Omega=\mathbb{R}$ equipped with the Borel σ-algebra $\mathcal{B}(\mathbb{R})$. We have shown the cumulative distribution function $F(t)=$ $P((-\infty, t])$ is right-continuous, which means

$$
F(t+)=\lim _{u \downarrow t} F(u)=F(t) \quad \forall t \in \mathbb{R} .
$$

Denote the jump size of F at t by $\Delta F(t)=F(t)-F(t-)$ where $F(t-)=$ $\lim _{s \uparrow t} F(s)$ is the limit from the left.
(a) Show that $P(\{t\})=\Delta F(t)$.
(b) Show that the set $\{t \in \mathbb{R}: \Delta F(t)>0\}$ is at most a countable set.
6. Suppose a function $F: \mathbb{R} \rightarrow[0,1]$ is given by

$$
F(t)=\sum_{n=1}^{\infty} 2^{-n} \mathbf{1}(t \geq 1 / n)
$$

(a) Show that $F(t)$ the cumulative distribution function of a probability P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
For such P, compute the probabilities of the following events:

- $A=[1, \infty)$,
- $B=[1 / 10, \infty)$,
- $C=\{0\}$,
- $D=[0,1 / 2)$,
- $E=(-\infty, 0)$,
- $G=(0, \infty)$.
(b) Define a random variable X on a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$ of your choice, with a probability \mathbb{P} of your choice, such that the distribution $\mathbb{P}(\{\omega: X(\omega) \leq t\})=F(t)$.
Hint: you can always define the random variable as the identity map in the space where it takes values, in this case \mathbb{R} equipped with the Borel σ-algebra $\mathcal{B}(\mathbb{R})$.

