HU, Probability Theory Fall 2015, Problems 3 (23.9.2015)

(On the Cylinder algebra on an infinite product space).

Let S be an abstract probability space equipped with a σ -algebra \mathcal{S} , for example $S = \mathbb{R}^d$ and $\mathcal{S} = \mathcal{B}(\mathbb{R}^d)$, the Borel σ -algebra. and T an (infinite) arbitrary set. Consider the space $\Omega = S^T$, whose elements are the maps $\omega: T \to S$, with $t \mapsto \omega_t \in S$.

We can also understand Ω as the infinite product space $\Omega = \prod_{t \in T} S_t$, where each S_t is a copy of S.

A cylinder is an Ω -subset with representation

$$C = \left\{ \omega : (\omega_{t_1}, \omega_{t_2} \dots, \omega_{t_d}) \in B_{t_1 \dots t_d} \right\}$$

$$(0.1)$$

for some $d \in \mathbb{N}, t_1, \ldots, t_d \in T$ and $B_{t_1 \ldots t_d} \in \mathcal{S}^{\otimes d} = \underbrace{\mathcal{S} \otimes \mathcal{S} \otimes \cdots \otimes \mathcal{S}}_{d\text{-times}}$, the

d-fold product of σ -algebrae. In other words, whether a function ω belongs to a cylinder *C* or not it is determined by its values on a finite number of coordinates.

Note that the cylinder representation (0.1) is not unique, for example the same cylinder C could be expressed as

$$C = \{\omega : (\omega_{t_1}, \omega_{t_2} \dots, \omega_{t_d}, \omega_{t_{d+1}}) \in B_{t_1 \dots t_d} \times S\}$$

- \mathbf{Q}_1 : Show that the cylinders $\mathcal{C} = \{C \subseteq \Omega : C \text{ is a cylinder }\}$ form an algebra of Ω -events.
- \mathbf{Q}_2 : However, the cylinders do not form a σ -algebra when T is infinite. Find an example where the countable intersection of cylinders is not a cylinder.

A consistent family \mathcal{P} of finite dimensional distribution is a collection of probability measures P_{t_1,\ldots,t_d} on the respective product σ -algebrae $\mathcal{S}^{\otimes d}$ indexed by $t_1, t_2, \ldots, t_d \in T$, where d varies in \mathbb{N} , satisfying the properties:

•

$$P_{t_1,\ldots,t_d}(B_{t_1}\times\cdots\times B_{t_d})=P_{t_{\pi(1)},\ldots,t_{\pi(d)}}(B_{t_{\pi(1)}}\times\cdots\times B_{t_{\pi(d)}})=$$

for every $d, t_1, \ldots, t_d \in T$ and π permutation of $\{1, 2, \ldots, d\}$, and $B_{t_i} \in S$.

$$P_{t_1,...,t_d}(B_{t_1,...,t_d}) = P_{t_1,...,t_d,t_{d+1}}(B_{t_1,...,t_d} \times S) =$$

$$\forall d, t_1,...,t_d, t_{d+1} \in T \text{ and } B_{t_1,...,t_d} \in S^{\otimes d}.$$

 \mathbf{Q}_3 : Show that the map

 $\mathbb{P}_0: \mathcal{C} \to [0,1]$

with $\mathbb{P}_0(C) = P_{t_1...t_d}(B_{t_1...t_d})$ for C with representation (0.1) is well defined, meaning that it does not depend on the particular representation of the cylinder C, and that \mathbb{P}^0 is finitely additive on the algebra \mathcal{C} .

For each t, let Q_t a probability on (S, \mathcal{S}) .

Define the family \mathcal{Q} of finite dimensional distributions

 $Q_{t_1...t_d} = Q_{t_1} \otimes Q_{t_2} \otimes \cdots \otimes Q_{t_d}$ as the product measure on the product space S^d equipped with product σ -algebra $\mathcal{S}^{\otimes d}$.

 \mathbf{Q}_4 : Show that \mathcal{Q} is a consistent family of finite dimensional distributions.

Remark The next question which will be adressed in the lectures is: can we extend uniquely \mathbb{P}^0 to a σ -additive probability defined on the σ algebra $\sigma(\mathcal{C})$ generated by the cylinders ? By Caratheordory theorem, it is enough to show that \mathbb{P}^0 is σ -additive on the cylinder algebra, namely if $(C_n : n \in \mathbb{N}) \subset \mathcal{C}$ is a cylinder sequence with $C_n \downarrow \emptyset$, necessarily $\mathbb{P}^0(C_n) \downarrow 0$. This is the content of Kolmogorov extension theorem, which requires an additional assumption on the probability space (S, \mathcal{S}) .

Q₅: In general, let Ω an abstract space and $\mathcal{E} \subseteq 2^{\Omega}$ a collection of Ω-subsets. Let $\mathcal{F} = \sigma(\mathcal{E})$ the σ-algebra generated by \mathcal{E} .

Show that $A \in \mathcal{F}$ if and only if $A \in \sigma(\mathcal{C})$ for some countable collection $\mathcal{C} \subseteq \mathcal{E}$, which may depend on A.

Hint: Show that the set

 $\{A \in \mathcal{F} : A \in \sigma(\mathcal{C}) \text{ for some countable } \mathcal{C} \subseteq \mathcal{E} \}$

is both a π -class and a Dynkin class and it contains \mathcal{E} .

 \mathbf{Q}_6 : We come back to the construction of the σ -algebra generated by the cylinders on $\Omega = S^T$. Using the previous exercise, show that a set A in the σ -algebra $\sigma(\mathcal{C})$ generated by the cylinders is determined by at most countably many T-coordinates.

In particular, when $T = \mathbb{R}^m$ and $S = \mathbb{R}^d$, show that the space of continuous function

$$C(\mathbb{R}^m, \mathbb{R}^d) = \left\{ \omega : \mathbb{R}^m \to \mathbb{R}^d \text{ continuous functions } \right\} \subseteq (\mathbb{R}^d)^{\mathbb{R}^m}$$

is not in the σ -algebra $\sigma(\mathcal{C})$ generated by the cylinders.