HU, Probability Theory Fall 2015, Problems 3 (23.9.2015)
(On the Cylinder algebra on an infinite product space).
Let S be an abstract probability space equipped with a σ-algebra \mathcal{S}, for example $S=\mathbb{R}^{d}$ and $\mathcal{S}=\mathcal{B}\left(\mathbb{R}^{d}\right)$, the Borel σ-algebra. and T an (infinite) arbitrary set. Consider the space $\Omega=S^{T}$, whose elements are the maps $\omega: T \rightarrow S$, with $t \mapsto \omega_{t} \in S$.

We can also understand Ω as the infinite product space $\Omega=\prod_{t \in T} S_{t}$, where each S_{t} is a copy of S.

A cylinder is an Ω-subset with representation

$$
\begin{equation*}
C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{t_{d}}\right) \in B_{t_{1} \ldots t_{d}}\right\} \tag{0.1}
\end{equation*}
$$

for some $d \in \mathbb{N}, t_{1}, \ldots, t_{d} \in T$ and $B_{t_{1} \ldots t_{d}} \in \mathcal{S}^{\otimes d}=\underbrace{\mathcal{S} \otimes \mathcal{S} \otimes \cdots \otimes \mathcal{S}}_{d \text {-times }}$, the d-fold product of σ-algebrae. In other words, whether a function ω belongs to a cylinder C or not it is determined by its values on a finite number of coordinates.

Note that the cylinder representation (0.1) is not unique, for example the same cylinder C could be expressed as

$$
C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{t_{d}}, \omega_{t_{d+1}}\right) \in B_{t_{1} \ldots t_{d}} \times S\right\}
$$

\mathbf{Q}_{1} : Show that the cylinders $\mathcal{C}=\{C \subseteq \Omega: C$ is a cylinder $\}$ form an algebra of Ω-events.
\mathbf{Q}_{2} : However, the cylinders do not form a σ-algebra when T is infinite. Find an example where the countable intersection of cylinders is not a cylinder.

A consistent family \mathcal{P} of finite dimensional distribution is a collection of probability measures $P_{t_{1}, \ldots, t_{d}}$ on the respective product σ-algebrae $\mathcal{S}^{\otimes d}$ indexed by $t_{1}, t_{2}, \ldots, t_{d} \in T$, where d varies in \mathbb{N}, satisfying the properties:

$$
P_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}} \times \cdots \times B_{t_{d}}\right)=P_{t_{\pi(1)}, \ldots, t_{\pi(d)}}\left(B_{t_{\pi(1)}} \times \cdots \times B_{t_{\pi(d)}}\right)=
$$

for every $d, t_{1}, \ldots, t_{d} \in T$ and π permutation of $\{1,2, \ldots, d\}$, and $B_{t_{i}} \in \mathcal{S}$.

$$
\begin{aligned}
& P_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}, \ldots, t_{d}}\right)=P_{t_{1}, \ldots, t_{d}, t_{d+1}}\left(B_{t_{1}, \ldots, t_{d}} \times S\right)= \\
& \forall d, t_{1}, \ldots, t_{d}, t_{d+1} \in T \text { and } B_{t_{1} \ldots, t_{d}} \in \mathcal{S}^{\otimes d} .
\end{aligned}
$$

Q_{3} : Show that the map

$$
\mathbb{P}_{0}: \mathcal{C} \rightarrow[0,1]
$$

with $\mathbb{P}_{0}(C)=P_{t_{1} \ldots t_{d}}\left(B_{t_{1} \ldots t_{d}}\right)$ for C with representation (0.1) is well defined, meaning that it does not depend on the particular representation of the cylinder C, and that \mathbb{P}^{0} is finitely additive on the algebra \mathcal{C}.

For each t, let Q_{t} a probability on (S, \mathcal{S}).
Define the family \mathcal{Q} of finite dimensional distributions
$Q_{t_{1} \ldots t_{d}}=Q_{t_{1}} \otimes Q_{t_{2}} \otimes \cdots \otimes Q_{t_{d}}$ as the product measure on the product space S^{d} equipped with product σ-algebra $\mathcal{S}^{\otimes d}$.
Q_{4} : Show that \mathcal{Q} is a consistent family of finite dimensional distributions.
Remark The next question which will be adressed in the lectures is: can we extend uniquely \mathbb{P}^{0} to a σ-additive probability defined on the σ algebra $\sigma(\mathcal{C})$ generated by the cylinders ? By Caratheordory theorem, it is enough to show that \mathbb{P}^{0} is σ-additive on the cylinder algebra, namely if $\left(C_{n}: n \in \mathbb{N}\right) \subset \mathcal{C}$ is a cylinder sequence with $C_{n} \downarrow \emptyset$, necessarily $\mathbb{P}^{0}\left(C_{n}\right) \downarrow 0$. This is the content of Kolmogorov extension theorem, which requires an additional assumption on the probability space (S, \mathcal{S}).
\mathbf{Q}_{5} : In general, let Ω an abstract space and $\mathcal{E} \subseteq 2^{\Omega}$ a collection of Ω-subsets. Let $\mathcal{F}=\sigma(\mathcal{E})$ the σ-algebra generated by \mathcal{E}.
Show that $A \in \mathcal{F}$ if and only if $A \in \sigma(\mathcal{C})$ for some countable collection $\mathcal{C} \subseteq \mathcal{E}$, which may depend on A.
Hint: Show that the set

$$
\{A \in \mathcal{F}: A \in \sigma(\mathcal{C}) \text { for some countable } \mathcal{C} \subseteq \mathcal{E}\}
$$

is both a π-class and a Dynkin class and it contains \mathcal{E}.
\mathbf{Q}_{6} : We come back to the construction of the σ-algebra generated by the cylinders on $\Omega=S^{T}$. Using the previous exercise, show that a set A in the σ-algebra $\sigma(\mathcal{C})$ generated by the cylinders is determined by at most countably many T-coordinates.
In particular, when $T=\mathbb{R}^{m}$ and $S=\mathbb{R}^{d}$, show that the space of continuous function

$$
C\left(\mathbb{R}^{m}, \mathbb{R}^{d}\right)=\left\{\omega: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d} \text { continuous functions }\right\} \subseteq\left(\mathbb{R}^{d}\right)^{\mathbb{R}^{m}}
$$

is not in the σ-algebra $\sigma(\mathcal{C})$ generated by the cylinders.

