HU, Probability Theory Fall 2015, Problems 2 (16.9.2015)

1. A finitely additive probability \mathbb{P} on a probability space Ω equipped with a σ -algebra \mathcal{F} is also σ -additive if and only if for any event sequence $(A_n : n \in \mathbb{N}) \subseteq \mathcal{F}$ with $A_n \downarrow \emptyset$, meaning that $\forall n \in \mathbb{N} \ A_n \supseteq A_{n+1}$ and $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, it follows that $\mathbb{P}(A_n) \downarrow 0$.

This does not hold for infinite measures with $\lambda(\Omega) = \infty$, for example for the Lebesgue measure λ on \mathbb{R} equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$, such that $\lambda((a, b]) = (b - a)^+$. Here $x^+ = \max\{x, 0\}$ is the notation for the positive part of $x \in \mathbb{R}$.

Find a counterexample, as a sequence $(A_n : n \in \mathbb{N}) \subset \mathcal{B}(\mathbb{R})$, with $A_n \downarrow 0$ but $\lambda(A_n) \not\to 0$.

2. Let $\Omega = \mathbb{R}^d$, the euclidean space. In general the Borel σ algebra is the smallest σ -algebra containing the open sets.

For $t \in \mathbb{R}^d$, we introduce the infinite rectangle

$$(-\infty, t] = \{s \in \mathbb{R}^d : s_i \le t_i, i = 1, \dots d\}$$

Show that the class

$$\mathcal{I} = \left\{ (-\infty, q], q \in \mathbb{Q}^d \right\}$$

is a π -class with $\sigma(\mathcal{I}) = \mathcal{B}(\mathbb{R}^d)$.

Hint If U is open in \mathbb{R}^d , since \mathbb{Q} is dense in \mathbb{R} , $\forall x \in U \exists r, q \in \mathbb{Q}^d$ such that r < q (meaning that $r_i < q_i$ for each coordinate $i = 1, \ldots, d$

 $x \in (r,q) := (r_1,q_1) \times (r_2,q_2) \times \cdots \times (r_d,q_d) \subseteq U.$

i.e. there is a small open rectangle containg x which is contained in U.

3. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, and a sequence of events $A_n \in \mathcal{F}$ such that $\mathbb{P}(A_n) = 1 \ \forall n \in \mathbb{N}$.

Show that $\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right) = 1.$ Consider also a sequence $B_n \in \mathcal{F}$ such that $\mathbb{P}(B_n) = 0 \ \forall n \in \mathbb{N}.$ Show that $\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_n\right) = 0.$ 4. Consider the probability space (Ω, \mathcal{F}) and an event sequence $(A_n : n \in \mathbb{N}) \subseteq \mathcal{F}$. We denote

$$\limsup_{n} A_{n} := \bigcap_{k \in \mathbb{N}} \bigcup_{n \ge k} A_{k}, \quad \liminf_{n} A_{n} := \bigcup_{k \in \mathbb{N}} \bigcap_{n \ge k} A_{k},$$

- (a) Show that $(\limsup_n A_n) \in \mathcal{F}$.
- (b) Show that $(\liminf_n A_n) = (\limsup_n A_n^c)^c$. where $B^c = \Omega \setminus B$ is the complement event.
- (c) Show that $(\liminf_n A_n) \in \mathcal{F}$.
- (d) For $A \in \mathcal{A}$, let $\mathbf{1}_A(\omega)$, the indicator function of A defined for $\omega \in \Omega$. Show that

$$\mathbf{1}_{(\limsup_n A_n)}(\omega) = \limsup_n \mathbf{1}_{A_n}(\omega), \quad \mathbf{1}_{(\liminf_n A_n)}(\omega) = \liminf_n \mathbf{1}_{A_n}(\omega)$$

(e) Show that

 $\limsup_{n} A_{n} = \{ \omega : \omega \in A_{n} \text{ infinitely often, which means for infinitely many } n \}$

 $\liminf_{n} A_n = \{ \omega : \omega \in A_n \text{ eventually, which means for all } n \text{ large enough } \}$

(f) Let $A_n \subseteq B_n \ \forall n$. Show that

$$\limsup_{n} A_n \subseteq \limsup_{n} B_n, \quad \liminf_{n} A_n \subseteq \liminf_{n} B_n$$

- (g) Suppose that for a probability \mathbb{P} we have $\mathbb{P}(\limsup_n A_n) = 1$ and $\mathbb{P}(\liminf_n B_n) = 1$. Show that $\mathbb{P}(\limsup_n A_n \cap B_n) = 1$.
- 5. Let (Ω, \mathcal{F}) a probability space, with a sequence of probability measures $(\mathbb{P}_n : n \in \mathbb{N}).$

Suppose that $\forall A \in \mathcal{F}$ the limits

$$\mathbb{P}(A) := \lim_{n \to \infty} \mathbb{P}_n(A)$$

exists.

- (a) Prove that in such case the map $\mathbb{P}: \mathcal{F} \longrightarrow [0,1]$ is a probability measure.
- (b) For each event sequence $(A_k : k \in \mathbb{N}) \subseteq \mathcal{F}$ such that $A_k \downarrow \emptyset$ we have

$$\sup_{n\in\mathbb{N}}\mathbb{P}_n(A_k)\downarrow 0 \text{ as } k\uparrow\infty$$