HU, Probability Theory Fall 2015, Problems 2 (16.9.2015)

1. A finitely additive probability \mathbb{P} on a probability space Ω equipped with a σ-algebra \mathcal{F} is also σ-additive if and only if for any event sequence $\left(A_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{F}$ with $A_{n} \downarrow \emptyset$, meaning that $\forall n \in \mathbb{N} A_{n} \supseteq A_{n+1}$ and $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$, it follows that $\mathbb{P}\left(A_{n}\right) \downarrow 0$.
This does not hold for infinite measures with $\lambda(\Omega)=\infty$, for example for the Lebesgue measure λ on \mathbb{R} equipped with the Borel σ-algebra $\mathcal{B}(\mathbb{R})$, such that $\lambda((a, b])=(b-a)^{+}$. Here $x^{+}=\max \{x, 0\}$ is the notation for the positive part of $x \in \mathbb{R}$.
Find a counterexample, as a sequence $\left(A_{n}: n \in \mathbb{N}\right) \subset \mathcal{B}(\mathbb{R})$, with $A_{n} \downarrow 0$ but $\lambda\left(A_{n}\right) \nrightarrow 0$.
2. Let $\Omega=\mathbb{R}^{d}$, the euclidean space. In general the Borel σ algebra is the smallest σ-algebra containing the open sets.
For $t \in \mathbb{R}^{d}$, we introduce the infinite rectangle

$$
(-\infty, t]=\left\{s \in \mathbb{R}^{d}: s_{i} \leq t_{i}, i=1, \ldots d\right\}
$$

Show that the class

$$
\mathcal{I}=\left\{(-\infty, q], q \in \mathbb{Q}^{d}\right\}
$$

is a π-class with $\sigma(\mathcal{I})=\mathcal{B}\left(\mathbb{R}^{d}\right)$.
Hint If U is open in \mathbb{R}^{d}, since \mathbb{Q} is dense in $\mathbb{R}, \forall x \in U \exists r, q \in \mathbb{Q}^{d}$ such that $r<q$ (meaning that $r_{i}<q_{i}$ for each coordinate $i=1, \ldots, d$

$$
x \in(r, q):=\left(r_{1}, q_{1}\right) \times\left(r_{2}, q_{2}\right) \times \cdots \times\left(r_{d}, q_{d}\right) \subseteq U .
$$

i.e. there is a small open rectangle containg x which is contained in U.
3. Consider a probabilty triple $(\Omega, \mathcal{F}, \mathbb{P})$, and a sequence of events $A_{n} \in \mathcal{F}$ such that $\mathbb{P}\left(A_{n}\right)=1 \forall n \in \mathbb{N}$.
Show that $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=1$.
Consider also a sequence $B_{n} \in \mathcal{F}$ such that $\mathbb{P}\left(B_{n}\right)=0 \forall n \in \mathbb{N}$.
Show that $\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=0$.
4. Consider the probability space (Ω, \mathcal{F}) and an event sequence ($A_{n}: n \in$ $\mathbb{N}) \subseteq \mathcal{F}$. We denote

$$
\lim \sup _{n} A_{n}:=\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{k}, \quad \liminf A_{n} A_{n}:=\bigcup_{k \in \mathbb{N}} \bigcap_{n \geq k} A_{k},
$$

(a) Show that $\left(\limsup \operatorname{su}_{n} A_{n}\right) \in \mathcal{F}$.
(b) Show that $\left(\liminf _{n} A_{n}\right)=\left(\limsup \operatorname{sip}_{n}^{c}\right)^{c}$. where $B^{c}=\Omega \backslash B$ is the complement event.
(c) Show that $\left(\liminf _{n} A_{n}\right) \in \mathcal{F}$.
(d) For $A \in \mathcal{A}$, let $\mathbf{1}_{A}(\omega)$, the indicator function of A defined for $\omega \in \Omega$. Show that
$\mathbf{1}_{(\operatorname{lim~sup}}^{n}$ A $\left.A_{n}\right)(\omega)=\lim \sup _{n} \mathbf{1}_{A_{n}}(\omega), \quad \mathbf{1}_{\left(\liminf _{n} A_{n}\right)}(\omega)=\lim \inf _{n} \mathbf{1}_{A_{n}}(\omega)$
(e) Show that
$\lim \sup _{n} A_{n}=\left\{\omega: \omega \in A_{n}\right.$ infinitely often, which means for infinitely many $\left.n\right\}$
$\lim \inf _{n} A_{n}=\left\{\omega: \omega \in A_{n}\right.$ eventually, which means for all n large enough $\}$
(f) Let $A_{n} \subseteq B_{n} \forall n$. Show that

$$
\lim \sup _{n} A_{n} \subseteq \lim \sup _{n} B_{n}, \quad \lim \inf _{n} A_{n} \subseteq \liminf B_{n}
$$

(g) Suppose that for a probability \mathbb{P} we have $\mathbb{P}\left(\lim \sup _{n} A_{n}\right)=1$ and $\mathbb{P}\left(\lim \inf _{n} B_{n}\right)=1$. Show that $\mathbb{P}\left(\lim \sup _{n} A_{n} \cap B_{n}\right)=1$.
5. Let (Ω, \mathcal{F}) a probability space, with a sequence of probability measures $\left(\mathbb{P}_{n}: n \in \mathbb{N}\right)$.
Suppose that $\forall A \in \mathcal{F}$ the limits

$$
\mathbb{P}(A):=\lim _{n \rightarrow \infty} \mathbb{P}_{n}(A)
$$

exists.
(a) Prove that in such case the map $\mathbb{P}: \mathcal{F} \longrightarrow[0,1]$ is a probability measure.
(b) For each event sequence $\left(A_{k}: k \in \mathbb{N}\right) \subseteq \mathcal{F}$ such that $A_{k} \downarrow \emptyset$ we have

$$
\sup _{n \in \mathbb{N}} \mathbb{P}_{n}\left(A_{k}\right) \downarrow 0 \text { as } k \uparrow \infty
$$

