HU, Probability Theory Fall 2015, Problems 1 (9.9.2015)

1. Let $\Omega = [0,1] \cap \mathbb{Q} = \{r \text{ rational} : 0 \le r \le 1 \},\$

and \mathcal{A} the collection of sets which can be represented as finite unions of intervals of type $(a, b] \cap \mathbb{Q}$, $[a, b] \cap \mathbb{Q}$, $(a, b) \cap \mathbb{Q}$, or $[a, b) \cap \mathbb{Q}$, with $0 \leq a \leq b \leq 1$.

Define $\forall 0 \leq a \leq b \leq 1$

$$P((a,b] \cap \mathbb{Q}) = P([a,b] \cap \mathbb{Q}) = P((a,b) \cap \mathbb{Q}) = P([a,b) \cap \mathbb{Q}) = b - a,$$

- Show \mathcal{A} is an algebra, which means $\Omega \in \mathcal{A}$, and when $A \in \mathcal{A}$ also $A^c := (\Omega \setminus A) \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ also $A \cup B \in \mathcal{A}$.
- Extend the function P to a finitely additive probability on the algebra \mathcal{A} .
- Show that such additive P is not σ -additive.

Hint $\Omega = [0, 1] \cap \mathbb{Q}$ is countable !.

2. Consider an abstract set Ω , and define the collection

 $\mathcal{A} = \left\{ A \subseteq \Omega : \text{ either } A \text{ or its complement } A^c = \Omega \setminus A \text{ is finite } \right\}$

- Show that \mathcal{A} is an algebra but it is not a σ -algebra.
- For $A \in \mathcal{A}$, define Q(A) = 0 when A is finite and Q(A) = 1 when A is infinite. Show that Q is finitely additive on \mathcal{A} but not σ -additive.
- 3. Let Ω an abstract set and 2^{Ω} its power, which is the collection of subsets $A \subseteq \Omega$.

Define the symmetric difference of $A, B \subseteq \Omega$ as

$$A\Delta B = (A \cup B) \setminus (A \cap B) = \{\omega : \omega \in A \text{ or } \omega \in B \text{ but not in both } \}$$

Show that 2^{Ω} is a **ring** with respect to the operations Δ (sum) and \cap (product), which means

- Find an identity element with respect to the operation Δ .
- Find an identity element with respect to the operation \cap .
- Show that every element $A \subset \Omega$ has an additive inverse,

• Show that Δ is associative and the distributive property holds between Δ and \cap .

Hint : for indicators we have

$$\mathbf{1}_{A\cap B} = \mathbf{1}_A \mathbf{1}_B, \quad \mathbf{1}_{A\cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B$$
$$\mathbf{1}_{(A\Delta B)} = (\mathbf{1}_A + \mathbf{1}_B) \mod 2 = \mathbf{1}_A + \mathbf{1}_B - 2 \times \mathbf{1}_A \mathbf{1}_B = \mathbf{1}_A \mathbf{1}_{B^c} + \mathbf{1}_B \mathbf{1}_{A^c}$$

4. Consider an arbitrary collection of σ -algebrae { $\mathcal{G}_{\alpha} : \alpha \in \mathcal{I}$ } on the same set Ω .

Show that the intersection of σ -algebrae

$$\mathcal{G} := \bigcap_{\alpha \in \mathcal{I}} \mathcal{G}_{\alpha}$$

is a σ -algebra.

- 5. About countable and uncountable sets:
 - (a) Show that in the blackboard represented as [0, 1]² there is place for an uncountable amount of mutually non-intersecting zero symbols 'O', (circles), where the circles can be also inside each other but they should not touch each other.
 - (b) Show that on the blackboard = $[0,1]^2$ or on an infinite blackboard like = \mathbb{R}^2 there is place for at most a countable numbers of mutually non-intersecting '8' symbols, or ∞ -symbols if you like, where the symbols can contain each other but the boundaries of different curves cannot touch each other.