HU, Probability Theory Fall 2015, Problems 1 (9.9.2015)

1. Let $\Omega=[0,1] \cap \mathbb{Q}=\{r$ rational : $0 \leq r \leq 1\}$,
and \mathcal{A} the collection of sets which can be represented as finite unions of intervals of type $(a, b] \cap \mathbb{Q},[a, b] \cap \mathbb{Q},(a, b) \cap \mathbb{Q}$, or $[a, b) \cap \mathbb{Q}$, with $0 \leq a \leq b \leq 1$.
Define $\forall 0 \leq a \leq b \leq 1$

$$
P((a, b] \cap \mathbb{Q})=P([a, b] \cap \mathbb{Q})=P((a, b) \cap \mathbb{Q})=P([a, b) \cap \mathbb{Q})=b-a,
$$

- Show \mathcal{A} is an algebra, which means $\Omega \in \mathcal{A}$, and when $A \in \mathcal{A}$ also $A^{c}:=(\Omega \backslash A) \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ also $A \cup B \in \mathcal{A}$.
- Extend the function P to a finitely additive probability on the algebra \mathcal{A}.
- Show that such additive P is not σ-additive.

Hint $\Omega=[0,1] \cap \mathbb{Q}$ is countable !.
2. Consider an abstract set Ω, and define the collection $\mathcal{A}=\left\{A \subseteq \Omega:\right.$ either A or its complement $A^{c}=\Omega \backslash A$ is finite $\}$

- Show that \mathcal{A} is an algebra but it is not a σ-algebra.
- For $A \in \mathcal{A}$, define $Q(A)=0$ when A is finite and $Q(A)=1$ when A is infinite. Show that Q is finitely additive on \mathcal{A} but not σ-additive.

3. Let Ω an abstract set and 2^{Ω} its power, which is the collection of subsets $A \subseteq \Omega$.
Define the symmetric difference of $A, B \subseteq \Omega$ as $A \Delta B=(A \cup B) \backslash(A \cap B)=\{\omega: \omega \in A$ or $\omega \in B$ but not in both $\}$

Show that 2^{Ω} is a ring with respect to the operations Δ (sum) and \cap (product), which means

- Find an identity element with respect to the operation Δ.
- Find an identity element with respect to the operation \cap.
- Show that every element $A \subset \Omega$ has an additive inverse,
- Show that Δ is associative and the distributive property holds between Δ and \cap.

Hint : for indicators we have

$$
\begin{aligned}
& \mathbf{1}_{A \cap B}=\mathbf{1}_{A} \mathbf{1}_{B}, \quad \mathbf{1}_{A \cup B}=1_{A}+1_{B}-1_{A} 1_{B} \\
& \mathbf{1}_{(A \Delta B)}=\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) \bmod 2=\mathbf{1}_{A}+\mathbf{1}_{B}-2 \times \mathbf{1}_{A} \mathbf{1}_{B}=1_{A} \mathbf{1}_{B^{c}}+\mathbf{1}_{B} \mathbf{1}_{A^{c}}
\end{aligned}
$$

4. Consider an arbitrary collection of σ-algebrae $\left\{\mathcal{G}_{\alpha}: \alpha \in \mathcal{I}\right\}$ on the same set Ω.

Show that the intersection of σ-algebrae

$$
\mathcal{G}:=\bigcap_{\alpha \in \mathcal{I}} \mathcal{G}_{\alpha}
$$

is a σ-algebra.
5. About countable and uncountable sets:
(a) Show that in the blackboard represented as $[0,1]^{2}$ there is place for an uncountable amount of mutually non-intersecting zero symbols 'O', (circles), where the circles can be also inside each other but they should not touch each other.
(b) Show that on the blackboard $=[0,1]^{2}$ or on an infinite blackboard like $=\mathbb{R}^{2}$ there is place for at most a countable numbers of mutually non-intersecting ' 8 ' symbols, or ∞-symbols if you like, where the symbols can contain each other but the boundaries of different curves cannot touch each other.

