Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015
 Home assignment 4

Return by: ma 28.9.2015 klo 19.30
Return corrections by: ma 05.10.2015 klo 19.30

Problem set I

The purpose of the following three exercices is to explain why one cannot use Green's Theorems directly in the whole domain when proving the Representation Theorem.

1. Let

$$
\phi(x)=|x|, x \in \mathbb{R}
$$

Evaluate ϕ^{\prime} and $\phi^{\prime \prime}$
2. Let $I=[-1,1]$ and $f \in C_{0}^{2}(I)$. Prove by evaluating the limits of the integrals

$$
\int_{I \backslash[-\varepsilon, \varepsilon]} f \phi^{\prime} d x, \quad \int_{I \backslash[-\varepsilon, \varepsilon]} f^{\prime} \phi d x
$$

as $\varepsilon \rightarrow+0$, that

$$
\int_{I \backslash\{0\}} f \phi^{\prime} d x=-\int_{I} f^{\prime} \phi d x .
$$

3. Using the same ideas as in the previous exercise, show that the equation

$$
\int_{I \backslash\{0\}} f \phi^{\prime \prime} d x=\int_{I} f^{\prime \prime} \phi d x
$$

is not valid. How can you modify this so that it would hold?

Problem set II

4. Prove that the Poisson Kernel

$$
K(x, y)=\frac{R^{2}-|x|^{2}}{|x-y|^{d}}
$$

is harmonic with respect to x in the open ball $B_{R}=\left\{x \in \mathbb{R}^{d} ;|x|<R\right\}$ for all $y \in \partial B_{R}$. Hint: Look at the exercise 2.3.2 on page 74 in DiBenedetto.
5. Prove that formula on page 46 in DiBenedetto,

$$
-\left.\frac{\partial}{\partial|y|} G(x, y)\right|_{y \in \partial B_{R}}=\frac{1}{R \omega_{N}} \frac{R^{2}-|x|^{2}}{|x-y|^{N}}
$$

is true. Here N is the dimension of the space. Hint: You may also have a look in 2.2.c) in the book of Evans.

For the following two problem sets read the section 2.4 of Dibenedetto, Subharmonic Functions and the Mean Value Property and especially the subsection 2.4.2 Structure of Sub-harmonic Functions. If you need to recall the claim of Jensen's inequality, see Appendix B in Evans. Also read section 2.5.1, The Harnack Inequality and the Liouville Theorem in DiBenedetto.

Problem set III

6. Is the function max $\left\{x_{1}^{2}+x_{2}^{2}, x_{1}^{2}-x_{2}^{2}\right\}$ subharmonic?
7. Is the function $\left(x_{1}^{2}+x_{2}^{2}\right)^{2}$ subharmonic?

Problem set IV

8. Explain in your own words, what the Harnack's Theorem (Theorem 2.5.1) says.
9. Explain in your own words, what the Liouville's Theorem (Theorem 2.5.1) says.
