Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015
 Home assignment 3

Return by: ma 21.9.2015 klo 19.30
Return corrections by: ma 28.9.2015 klo 19.30

Problem set I

1. Assume that F is a C^{1}-vector field and g is a differentiable real valued function. Derive the product rule of differentiation for the Divergence, i.e. compute $\nabla \cdot(g F)$.
2. Assume that u and v are $C^{2}-$ functions. Expand $\Delta(u v)$.

Problem set II

3. Consider the Helmholtz-equation

$$
(\Delta+c) u=0 \quad \text { in } \mathbb{R}^{3} .
$$

Prove that if u is radial solution of this equation, i.e. $u(x)=V(|x|)$, then the function V solves the ordinary differential equation

$$
\begin{equation*}
V^{\prime \prime}+\frac{2}{r} V^{\prime}+c V=0, r \neq 0 \tag{1}
\end{equation*}
$$

4. Solve (1). Hint: Look for the solution in the form $V=W / r$, and derive an equation for W.
5. Prove a representation theorem (i.e a Stokes identity using the terminology of DiBenedetto) for solutions of Helmholtz equation in bounded C^{1}-domains of \mathbb{R}^{3}.

For the following two problem sets read the section 2.4 of Dibenedetto, Subharmonic Functions and the Mean Value Property and especially the subsection 2.4.1 The Maximum Principle

Problem set III

6. In what plane domains the following functions are harmonic, subharmonic or superharmonic:

$$
x_{1}^{2}+x_{2}^{2}, \quad x_{1}^{2}-x_{2}^{2}, \quad x_{1} x_{2}, \quad x_{1}^{4} x_{2}+x_{1} x_{2}^{4} ?
$$

7. Compute the integral

$$
\int_{B_{1}((1,1))}\left(x_{1}^{4}-6 x_{1}^{2} x_{2}^{2}+x_{2}^{4}\right) d S(x),
$$

where $B_{1}((1,1))$ is the circle with radius one and centre $(1,1)$. Hint: Compute first $\Delta\left(x_{1}^{4}-6 x_{1}^{2} x_{2}^{2}+\right.$ $\left.x_{2}^{4}\right)$. What do you observe?

Problem set IV

8. Explain in your own words what the maximum principle says about the behaviour of harmonic functions.
9. Consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

in a plane domain $E=\left\{\left(x_{1}, x_{2}\right) ; x_{1}>0, x_{2}>0\right\}$. Is this harmonic? Does the Maximum Principle hold? Explain what is going on.

