Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015
 Home assignment 2

Return by: Monday 14.9.2015 7.30 pm
Return corrections by: Monday 21.9.2015 klo 7.30 pm
We say that the function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ determines a C^{k}-set $U, k \geq 1$, if the following conditions hold:

- $h \in C^{k}\left(\mathbb{R}^{n}\right)$.
- We have $U=\left\{x \in \mathbb{R}^{n} ; h(x)<0\right\}$ and $\mathbb{R}^{n} \backslash \bar{U}=\left\{x \in \mathbb{R}^{n} ; h(x)>0\right\}$
- For the boundary we have $\partial U=\left\{x \in \mathbb{R}^{n} ; h(x)=0\right\}$.
- In addition the following must hold: If $h(x)=0$, then $\nabla h(x) \neq 0$.

Problem set I

1. If h determines a C^{k}-set U, what is the exterior unit normal, i.e the normal vector to the boundary having length $=1$, and pointing away from U ?
2. Give an example of a C^{1}-set, and its exterior unit normal.

Problem set II

3. Does the function $h(x, y)=y^{2}-x^{4}$ determine a C^{1}-set of the plane? Illustrate this by drawing a picture.
4. Does the function $h(x, y)=x y-1$ determine a C^{1}-set? Is this set bounded, or connected? Illustrate also this by drawing a picture.

Problem set III

Read sections 1.2 ja 1.3 of DiBenedetto
5. Explain the difference between the Dirichlet-problem, Neumann-problem and Cauchy-problem for the laplace-operator
6. Explain, why the example due to Hadamard in section 1.3 shows that the Cauchy-problem for the Laplace-operator is ill-posed.

Problem set IV

7. How the argument of Lemma 1.1 in DiBenedetto has to be changed so that it also proves the claim concerning the Neumann-problem?
8. Assume, that a radial function $f(x)=V(|x|)$ satisfies $\Delta f=0$ in $R^{n} \backslash 0$. Prove, that the function $V(r)$ of one variable solves the ordinary differential equation

$$
\begin{equation*}
V^{\prime \prime}+\frac{n-1}{r} V^{\prime}=0 . \tag{1}
\end{equation*}
$$

9. Solve the above equation (1) in dimensions $n=2$ ja $n=3$.
