Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015
 Home assignment 1

Return by: Monday 7.9.2015 7.30 pm
Return corrections by: Monday 14.9.2015 klo 7.30 pm
The first two problem sets are just for recalling some basic facts on differential equations and calculus. The two last ones act as a gentle introduction to concepts in next week lectures

Problem set I

You may consult a text book on calculus of several variables.

1. Evaluate the gradients of the following two functions:

$$
f(x, y)=e^{x^{2}+y^{2}} \sin (x-y), g(x, y, z)=\frac{x^{2}-y^{2}}{z^{2}+e^{x+y}} .
$$

2. Explain what is the directional derivative of the function f to the direction of a vector $\alpha,|\alpha|=1$. What does the gradient of a function tell of its growth?

Problem set II

You may consult your favourite text book on differential equations.
3. Assume that y solves the initial value problem

$$
y^{\prime}=\frac{y^{3}-y}{1+x^{4} y^{2}}, y(0)=1 / 2 .
$$

Show that on its domain of definition $0<y(x)<1$.
4. Solve the initial value problem

$$
y^{\prime}=A y, y(0)=\binom{0}{1}
$$

when

$$
A=\left(\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

Problem set III

Read the introduction of Chapter 2 in DiBenedetto, or alternatively the introduction 2.2.1 a) in Evans.
5. Formulate precisely the claim that Laplace operator is translation invariant, and prove it.
6. Formulate precisely the claim that Laplace operator is rotation invariant, and prove it.

Problem set IV

7. Let $u \in C^{2}(E)$, where $E \subset \mathbb{R}^{n}$ is open. Assume, that $\Delta u(x)>0$ for all $x \in E$. Can the function u have a strict local maxima in E ? What about a strict local minima?
8. Assume that $u \in C^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ solves the heat equation,

$$
u_{t}(x, t)-\Delta u(x, t)=0, \quad(x, t) \in \mathbb{R}^{n} \times(0, \infty) .
$$

Prove that for all $\lambda \in \mathbb{R}$ the function $u_{\lambda}(x, t)=u\left(\lambda x, \lambda^{2} t\right)$ also solves the heat equation

