Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015

Home assignment 13
Return by: Mon 07.12.2015 klo 19.30
Return corrections by: Mon 14.12.2015 klo 19.30

Problem set I

This time only one set of questions, and five problems. This is a practice exam :)

1. Solve the initial value problem

$$
\begin{gathered}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=x^{2}, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=x, \quad \frac{\partial u(x, 0)}{\partial t}=0, \quad x \in \mathbb{R} .
\end{gathered}
$$

2. Find all solution of the equation

$$
\frac{1}{h} \frac{\partial u(x, t)}{\partial t}-i \frac{\partial^{2} u(x, t)}{\partial x^{2}}=0,0<x<\pi, t>0
$$

which are of the form $u(x, t)=X(x) T(t)$ for which

$$
u(0, t)=u(\pi, t)=0, t>0
$$

Here h is a positive constant.
3. Let $\Omega=(0, l) \times \mathbb{R}_{+}, v \in C^{2}(\bar{\Omega})$ and assume that for all $(x, t) \in \Omega$ it holds

$$
\frac{\partial v(x, t)}{\partial t}-\frac{\partial^{2} v(x, t)}{\partial x^{2}}=0,
$$

and that for the initial values we have

$$
v(x, 0)=0, \quad 0<x<l,
$$

and

$$
v(0, t)=v(l, t)=0, \quad t>0 .
$$

Prove that $v=0$.
4. Solve the initial boundary value problem

$$
\begin{gathered}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-\frac{\partial^{2} u(x, t)}{\partial x^{2}}=0, \quad 0<x<\pi, t>0, \\
u(x, 0)=\sin x+\sin ^{2} x, \quad \frac{\partial u(x, 0)}{\partial t}=0, \quad 0<x<\pi . \\
u(0, t)=u(\pi, t)=0, \quad t>0 .
\end{gathered}
$$

The following problem is only included in the final exam.
5. Construct a (Dirichlet) Green's function for the Laplace-operaattor Δ in the unit ball $B(0,1)=$ $\left\{x \in \mathbb{R}^{3} ;\|x\|<1\right\}$.

