Partial Differential Equations
 University of Helsinki, Department of Mathematics and Statistics
 Fall 2015

Home assignment 12
Return by: Mon 30.11.2015 klo 19.30
Return corrections by: Mon 07.12.2015 klo 19.30

Problem set I

1. Solve the Cauchy-problem

$$
\begin{gathered}
\left(\partial_{t t}-c^{2} \Delta\right) u=0, \quad x \in \mathbb{R}^{3}, t>0 \\
u(x, 0)=|x|^{2}, \quad u_{t}(x, 0)=x_{3}
\end{gathered}
$$

2. Let $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ be the solution of the Cauchy-problem

$$
\begin{gathered}
\left(\partial_{t t}-c^{2} \Delta\right) u=0, \quad t>0 \\
\left.u\right|_{t=0}=f,\left.\quad u_{t}\right|_{t=0}=g
\end{gathered}
$$

Assume that f and g have compact supports. Prove that there exists a constant C such that

$$
|u(x, t)| \leq C / t, \quad x \in \mathbb{R}^{3}, t>0
$$

3. Consider the same problem as in the previous exercise, but now in dimension $2+1$, i.e. $x \in \mathbb{R}^{2}$ and $t \geq 0$. What estimate can you now prove for $|u(x, t)|$?
4. Consider the Cauchy-problem for the Telegraph equation:

$$
\begin{gathered}
u_{t t}-u_{x x}+\lambda^{2} u=0, \quad x \in \mathbb{R}, t>0, \\
\left.u\right|_{t=0}=f,\left.\quad u_{t}\right|_{t=0}=g,
\end{gathered}
$$

where $f \in C^{3}(\mathbb{R})$ and $g \in C^{2}(\mathbb{R})$. Prove, that

$$
u(x, t)=\frac{1}{2} \int_{x-t}^{x+t} J_{0}\left(\left(\lambda \sqrt{t^{2}-(x-s)^{2}}\right) g(s) d s+\frac{\partial}{\partial t} \int_{x-t}^{x+t} J_{0}\left(\lambda \sqrt{t^{2}-(x-s)^{2}}\right) f(s) d s\right.
$$

where

$$
J_{0}(s)=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (s \sin (\theta)) d \theta
$$

is the Bessel function of order zero.

Problem set II

Let H be a normed space. The norm of a linear map $A: H \rightarrow H$ is defined by

$$
\|A\|=\sup _{x \neq 0}\|A x\| /\|x\| .
$$

This is finite if and only if A is continuous.

1. Assume that H is a complete normed space, i.e. a Banach space. Assume that K is a continuous linear map with $\|K\|<1$. Prove that the equation

$$
(\mathbf{I}+K) x=y, \quad y \in H,
$$

has a unique solution $x \in H$ which is given by the norm convergent series

$$
x=\sum_{i=0}^{\infty}(-1)^{i} K^{i} x .
$$

This is the Neumann-series after a 19th Century German mathematician Carl Neumann.
2. Assume that B_{1} and B_{2} are Banach spaces, and that the linear map $A_{0}: B_{1} \rightarrow B_{2}$ has a bounded inverse A_{0}^{-1}. Assume that $R: B_{1} \rightarrow B_{2}$ is a continuous linear map and that

$$
\|R\|<\left\|A_{0}\right\|
$$

Prove that also $A_{0}+R$ is invertible, and determine its inverse.

Problem set III

For this set of problems recall the definition of a compact linear map and read sections 4.4-4.6 in DiBenedetto.

1. What is the definition of an almost separable integral kernel? Is the linear map $L^{2} \rightarrow L^{2}$ defined by an almost separable kernel always compact ?
2. Give an example of a compact linear map which is not finite dimensional.
