
MATHEMATICAL MODELLING

HOMEWORK SOLUTIONS

September 30, 2015

Exercise 8

Consider the model before scaling

dX

dt
= λ(Xmax −X)Y − δX

dY

dt
= −λ(Xmax −X)Y + βX − µY.

(a) Let ε > 0 be a small scaling parameter and substitute λ = λa/ε and Y = εYa (so
that λa has the same order of magnitude of the other parameters, and Ya has the same
order of magnitude of X). The new system is

dX

dt
=
λa
ε
ε(Xmax −X)Ya − δX = λa(Xmax −X)Ya − δX (1)

ε
dYa
dt

= −λa
ε
ε(Xmax −X)Ya + βX − εµYa = −λa(Xmax −X)Ya + βX − εµYa. (2)

From the previous system we can see that X is a slow variable and Ya is a fast variable
(dYa/dt is very large compared to dX/dt).

Before studying the slow dynamics, we check that the fast system admits a stable
equilibrium. If this is not true, the slow manifold is not well defined. To describe the fast
dynamics, we introduce the fast time τ := t/ε and consider the system

dX

dτ
=
dX

dt

dt

dτ
= ε [λa(Xmax −X)Ya − δX]

dYa
dτ

=
dYa
dt

dt

dτ
= ε

1

ε
[−λa(Xmax −X)Ya + βX − εµYa] .

In the limit ε → 0, we have dX
dτ = 0, therefore the slow variable is constant and the fast

dynamics is described by the 1-dimensional ODE

dYa
dτ

= −λa(Xmax −X)Ya + βX.

For fixed X ≤ Xmax, the fast dynamics has a stable equilibrium

Ŷa =
βX

λa(Xmax −X)
(3)

(to check it, you can plot dYa/dt as a function of Ya, observe that it is a straight line with
negative slope, and therefore dYa/dt > 0 if Ya < Ŷa, dYa/dt < 0 otherwise). Therefore,
the slow manifold is well defined and it makes sense to study the slow dynamics.
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We can obtain the equations for the slow dynamics by taking the limit of system (1)–(2)
as ε→ 0,

dX

dt
= λa(Xmax −X)Ya − δX

0 = −λa(Xmax −X)Ya + βX.

Observe that the slow manifold is obtained by solving the second equation, and it coincides
with the equilibrium of the fast dynamics (3). By substituting (3) in the first equation and
noting that (3) has to be positive, we get the following equation for the slow dynamics

dX

dt
=

{
(β − δ)X if X ≤ Xmax

0 otherwise.

(b) Let ε > 0 be a small scaling parameter and consider Yb = εY , and δb = εδ, βb = εβ
(so that Yb, δb, βb have the same order of magnitude of the other variables and parameters).
The system becomes

dX

dt
= λ(Xmax −X)

Yb
ε
− δb
ε
X

1

ε

dYb
dt

= −λ(Xmax −X)
Yb
ε

+
βb
ε
X − µYb

ε

and, by simplifying, we get

ε
dX

dt
= λ(Xmax −X)Yb − δbX

dYb
dt

= −λ(Xmax −X)Yb + βbX − µYb.

This is a slow-fast system because dX/dt is much larger than dYb/dt, hence in this case X
is the fast variable.

As before, we study the fast dynamics first, to make sure that the slow manifold is
well-defined. We introduce the fast time τ := t/ε and consider

dX

dτ
=
dX

dt

dt

dτ
= ε

1

ε
[λ(Xmax −X)Yb − δbX]

dYb
dτ

=
dYb
dt

dt

dτ
= ε [−λ(Xmax −X)Yb + βbX − µYb] .

In the limit ε→ 0, Yb is constant and the equation for the fast dynamics is

dX

dτ
= λ(Xmax −X)Yb − δbX = −(λYb + δb)X + λXmaxYb,

The equilibrium is

X̂ =
λXmaxYb
λYb + δb

< Xmax, (4)

and it easy to verify stability because the right-hand side is a straight line with a negative
slope with respect to X. Hence, the slow manifold is well defined.
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The equation for the slow dynamics are obtained by taking the limit as ε→ 0:

0 = λ(Xmax −X)Yb − δbX
dYb
dt

= −λ(Xmax −X)Yb + βbX − µYb.

The slow manifold is obtained by solving the second equation and is exactly (4), and by
substituting into the first equation, we get the following equation for the slow dynamics

dYb
dt

= (βb − δb)
λXmaxYb
λYb + δb

− µYb =
Yb

λYb + δb
[λXmax(βb − δb)− µδb − µλYb]

which may be written as
dYb
dt

=
1

λYb + δb
rYb

(
1− Yb

K

)
with

r = λXmax(βb − δb)− µδb, K =
λXmax(βb − δb)− µδb

µλ
.

Remark 1. By comparing this exercise and the example in class (where we obtained
a logistic equation for the slow dynamics), we can note how a different scaling of the
parameters lead to very different dynamical behaviour.

Exercise 9

It is important to note that the exercise does not have a unique possible solution.
Different choice of scaling lead to different results. Some choices may lead to uninteresting
problems (e.g., both populations go extinct) or problems that cannot be analysed with
the slow-fast method (e.g., if the fast dynamics does not have a stable equilibrium). Once
you have chosen the parameter scaling, the analysis consists of the same steps. Note that,
in order to carry of the stability analysis of the fast system, you will need to specify the
growth function f(X) (for instance, linear growth or logistic growth).

Some possible scaling choices.

(a) α =
α0

ε
, β =

β0
ε
, T = T0ε, p = p0ε;

(b) α =
α0

ε
, β =

β0
ε
;

(c) β =
β0
ε
;

(d) p = εp0, δ = εδ0 (note that, in this scaling, t is already the fast time).
Observe how some choices lead to a trivial dynamics, in the sense that both populations

go extinct (prey dies fast, predator dies slowly). It’s much more interesting if you find a
nontrivial dynamics, where coexistence is possible!

Recipe for fast-slow analysis. Here I summarise the main steps of a fast-slow analysis,
that you can apply to your specific scaling by following the scheme of Exercise 8.
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1. Fast-slow system. Consider
dx

dt
= f(x, y)

dy

dt
=

1

ε
g(x, y)

where ε > 0 is a small, dimensionless scaling parameter.

ẏ is large ⇒ y fast variable
x slow variable

t is the slow time.

Before analysing the slow dynamics, we need to check that the fast dynamics has a
stable equilibrium.

If no unique stable equilibrium exists, then the slow manifold is not well defined.

2. Fast dynamics. Introduce the fast time τ := t
ε .

The system describing the fast dynamics is
dx

dτ
= εf(x, y)

dy

dτ
= g(x, y). (5)

In the limit ε→ 0 the first equation gives dx/dτ = 0. Indeed, if we look in fast time,
the x variable is changing so slowly that we don’t recognise any change. It is fixed
at a certain value x.

We do phase-plane analysis or linear stability analysis to check that equation (5) has
a stable equilibrium ŷ = ŷ(x) satisfying

0 = g(x, ŷ).

This means that, when we look at slow time, for any value of x the fast variable y
goes “instantly” to its equilibrium value ŷ(x).

3. Slow dynamics. If the fast dynamics admits a unique stable equilibrium ŷ, then
we look back at the dynamics in slow time

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y).

In the limit ε → 0, the second equation 0 = g(x, ŷ) defines the slow manifold ŷ(x).
Observe that this is the same condition defining the stable equilibrium of the fast
dynamics.

We describe the dynamics on the slow manifold by plugging this into the first equa-
tion,

dx

dt
= f(x, ŷ(x)),

which is an ODE in the variable x. We can study the slow dynamics using phase-plane
and linear stability analysis in the normal way.
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