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September 23, 2015

Exercise 6

(a) An individual in a site (e.g., plant or flower) produces n + 1 offsprings (e.g., seeds)
that disperse in the environment. After reproducing, the mother dies and her site becomes
free.

(b) System of ODEs

dX

dt
= −βX −δX +λSY

dS

dt
= +βX +δX −λSY

dY

dt
= +(n+ 1)βX −λSY −µY

(1)

(c) The total density of sites s0 = X +S satisfies d
dt(X +S) = 0, therefore it is constant

in time. Then we can write S = s0 −X and, by substituting into (1), we get the system
of two ODEs

dX

dt
= −(β + δ)X + λs0Y − λXY

dY

dt
= (n+ 1)βX − (µ+ λs0)Y + λXY

(d) We assume that the number of seeds produced is very large, and that the mortality
rate of seeds without a site is very high, and we do that by substituting the parameters
n and µ by n/ε, µ/ε, where ε > 0 is a small scaling parameter. Therefore, we study the
fast-slow system

dX

dt
= −(β + δ)X + λs0Y − λXY

dY

dt
=

(n
ε

+ 1
)
βX −

(µ
ε

+ λs0

)
Y + λXY

(2)

(e) In particular, the second equation becomes

ε
dY

dt
= nβX + εβX − µY − ελs0Y + ελXY
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and in the limit ε→ 0, system (2) reduces to

dX

dt
= −(β + δ)X + λs0Y − λXY

0 = nβX − µY
(3)

By solving the second equation, we obtain the slow manifold

Y =
nβ

µ
X.

By plugging this into the first equation of system (3), we obtain the single ODE on the
slow manifold

dX

dt
= −(β + δ)X + λs0

nβ

µ
X − λnβ

µ
X2 = rX

(
1− X

K

)
,

where
r = λs0

nβ

µ
− β − δ, K =

λs0nβ − (β + δ)µ

λnβ
.

Remark 1. This exercise combines two different methods that are useful to reduce the
dimension of the original model: conservation law and time-scale separation. These two
methods allowed us to go from a system of 3 equations to a single equation.

Exercise 7

i-states & transitions Interpretation

S healthy but susceptible individual

I infected individual

R recovered and temporally immune individual

S + I
β−→ I + I a susceptible gets in contact with an infected and becomes in-

fected

I
γ−→ R infected recovers from the disease and becomes immune

R
δ−→ S recovered loses immunity and becomes susceptible again

This kind of models are called SIR models (from the letters denoting the different classes).

Remark 2. Observe that demography is not included in the model, in the sense that
natural birth or death of individuals are ignored. This is the case if the infection period is
short compared to the lifetime of an individual (e.g., flue epidemic). Moreover, since one
can exit the infected class only through recovery, this is not a deadly disease.

From the previous remark, since there are no death/births in the model, the total
population density N = s + i + r is constant in time, and indeed it is easy to check that
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dN
dt = 0. We use the conservation relation for reducing the dimension of the model, by
substituting r = N − s− i. Therefore,

ds

dt
= −βsi+ δ(N − s− i)

di

dt
= +βsi− γi

(4)

Phase-plane analysis.

1. From biological assumptions, we consider the plane s, i ≥ 0.

2. s-isocline: i =
δ(N − s)
βs+ δ

i-isocline: i = 0 or s =
γ

β
If we study the sign of the derivative, we observe that

ds

dt
> 0⇔ i <

δ(N − s)
βs+ δ

di

dt
> 0⇔ s >

γ

β
.

3. The s-isocline is a hyperbola intersecting the axes in (0, δNβ ) and (N, 0).

We split two cases: N < γ
β and N ≥ γ

β .

First case: N < γ
β . Compare Figure 1.

4. The only equilibrium is E1 = (N, 0)

5. All the arrows are pointing towards the equilibrium: E1 is stable.

Second case: N ≥ γ
β . Compare Figure 2.

4. The equilibria are E1 = (N, 0) and

E2 = (s̄, ī) =

(
γ

β
,
δ(βN − γ)

β(γ + δ)

)
.

5. Looking at the arrows, we observe that E1 is unstable (saddle), but we cannot con-
clude about the stability of E2.

6. To investigate the stability of E2, we need linear stability analysis.
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Figure 1: phase portrait of case N < γ
β .
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Figure 2: phase portrait of case N ≥ γ
β .
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