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Exercise 4

Interpretation. I propose two possible interpretations: a consumer–resource model with
constant influx ϕ of resource (you can see it also as a predator–prey model, where the prey
is the resource), or an epidemiological model (SIS model) with constant immigration influx
ϕ of susceptible individuals.

Resource–consumer : the resource is eaten at a rate β. With probability p, the resource
is converted into one offspring. With probability 1−p, there is no reproduction at all. The
resource does not reproduce itself: the only influx is the forcing term ϕ.

Epidemics: if a susceptible meets an infected, she will be infected herself at a rate
γ = β. There is no recovery from the disease (or, alternatively, recovered individuals are
immune to the disease, so they are not susceptible any more). Infected individuals might
have a higher death rate than susceptibles: δ ≥ α.

i-states & transitions Resource–consumer model Epidemiological model

X resource susceptible individual

Y consumer infected individual

∅ ϕ−→ B resource influx immigration of healthy ind

Y + X
(1−p)β−→ Y

}
consumption and
reproduction, γ = pβ

infection (with p = 0, γ = β)
Y + X

pβ−→ 2 Y

X
α−→ † natural decay of resource natural death of healthy ind

Y
δ−→ † natural death of consumer death of infected individual

The ODE system is 
dx

dt
= ϕ− αx− βxy

dy

dt
= γxy − δy
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Phase-plane analysis. Recipe for drawing a phase-plane picture:

1. remember conditions from biological assumption, e.g., x ≥ 0, y ≥ 0;

2. compute isoclines ẋ = 0, ẏ = 0;

3. plot the isoclines in the plane (x, y) (tip: plot x- and y-isoclines in different colours),
and the horizontal (no change in y, ẏ = 0) or vertical (no change in x, ẋ = 0) arrows
on the isoclines; maybe you need to consider different cases?

4. equilibrium points are points where different isoclines (i.e., different colours!) inter-
sect;

5. study where ẋ > 0 and ẏ > 0 and plot the corresponding arrows in all the different
regions of the plane;

6. observe the direction of the flow, especially in correspondence of equilibria, and
deduce stability:
(i) all the arrows are pointing towards the equilibrium ⇒ stable;
(ii) at least one arrow is pointing outwards ⇒ unstable;
(iii) the arrows are turning around⇒ cannot conclude, need deeper invastigation (we
will study linear stability analysis: eigenvalues of the Jacobian matrix).

From biological assumptions, we are interested in x ≥ 0, y ≥ 0. The isoclines are

ẋ = 0 ⇔ y =
ϕ

βx
− α

β

ẏ = 0 ⇔ y = 0 or x =
δ

γ

The x-isocline is a hyperbola asymptotic to the y axis and intersecting the x axis in(ϕ
α , 0
)
. The y-isocline is the union of two straight lines parallel to the axis.

In order to being able to plot the isoclines and their intersection, we need to separate
two different cases: ϕ

α ≤
δ
γ or ϕ

α >
δ
γ (see Figure 1 and 2). We draw the isoclines and the

arrows observing that

ẋ > 0 ⇔ y <
ϕ

βx
− α

β

ẏ > 0 ⇔ x >
δ

γ
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Figure 1: isoclines in the case ϕ
α ≤

δ
γ .
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Figure 2: isoclines in the case ϕ
α >

δ
γ .

First case: ϕ
α ≤

δ
γ (Figure 1): the only equilibrium point (intersection between different

isoclines) is E1 = (ϕα , 0). Observing the direction of the flow (arrows), we conclude that
E1 is stable (all arrows pointing towards it).

Second case: ϕ
α > δ

γ (Figure 2):there are two intersection points between different
isoclines,

E1 =
(ϕ
α
, 0
)

and E2 =

(
δ

γ
,
ϕγ − αδ
βδ

)
By observing the direction of the arrows, we can say that E1 is unstable (one arrow pointing
outwards), but we cannot conclude anything about the stability of E2, because the arrows
are turning around.

Remark 1. Be careful: the point ( δγ , 0) is not an equilibrium of the system, because it
is given by the intersection of isoclines relative to the same variable (blue isoclines in the
picture). Indeed, in that point we have ẋ 6= 0.

Exercise 5

i-states. After some trials, I think the best thing to do for representing the dynamics of
larvae is to define different i-states for larvae with 0, 1 and 2 or more eggs. Therefore, we
consider the following i-states: butterfly B , parasitoid P , larva without parasitoid eggs
L0 , larva with one single egg L1 , larva with two or more eggs L2 .

To make the model even simpler, I assume that larvae with two or more eggs die
instantly, and avoid to include the state L2 .
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i-state transitions.

(a) B
β−→ L0 + B production of larvae

(b) P + L0
λ0−→ P + L1 encounter and egg deposition in empty larva

(c) P + L1
λ1−→ P + † encounter and egg deposition in larva with 1 egg

(d) L0
γ0−→ B maturation of a larva into butterfly

(e) L1
γ1−→ P maturation of a larva into parasitoiod

(f1) B
δB−→ † mortality of butterfly

(f2) P
δP−→ † mortality of parasitoid

(f3) L0
δ0−→ † mortality of larva

(f4) L1
δ1−→ † mortality of larva with one egg

Remark 2. Some comments about the rates:
(i) the encounter rates λ0, λ1 in processes (b) and (c) may depend for instance on the place
where the larva has been produced, on the motility of larvae and of parasites or on hiding
ability of larva. Note that, if such properties remain unchanged;
(ii) the development rate of larvae with 0 or 1 egg might be different (e.g., if the development
of parasitoid requires less resource). Therefore, we allow different maturation rates γ0, γ1
in processes (d) and (e). Note that, if the development property remains exactly the same,
than the rates would also be the equal. The same remark applies to the mortality rates in
processes (f3) and (f4).

System of ODEs for population densities.

(a) (b) (c) (d) (e) (f)

dB

dt
= +γ0L0 −δBB

dP

dt
= +γ1L1 −δPP

dL0

dt
= +βB −λ0PL0 −γ0L0 −δ0L0

dL1

dt
= +λ0PL0 −λ1PL1 −γ1L1 −δ1L1
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