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Exercise 22

(a) Denote Dm the diffusion coefficient of the roaming prey. Denote Dp, q the diffusion
and taxis coefficient of the predator, respectively. Note that the taxis is positive and
movement is towards higher prey density, i.e., Jtaxis = +qp∂xm1. The equations are

∂tp = Dp∂xxp− q∂x(p∂xm1)

∂tm1 = −αpm1 +
1

τ
m2 +Dm∂xxm1

∂tm2 = +αpm1 −
1

τ
m2

The reflecting boundary condition for m1 is

J1 = −Dm∂xm1 = 0⇔ ∂xm1 = 0 for x = 0, L

and for p we obtain

Jp = −Dp∂xp+ qp∂xm1 = 0 for x = 0, L

⇔ ∂xp = 0 for x = 0, L

(b) Assume that reactions are fast (substitute α with α/ε and τ with ετ). In the fast
time ϑ = t/ε the fast dynamics is

1
ε∂ϑp = Dp∂xxp− q∂x(p∂xm1)
1
ε∂ϑm1 = −α

ε pm1 +
1
ετm2 +Dm∂xxm1

1
ε∂ϑm2 = +α

ε pm1 − 1
ετm2

ε→0
==⇒


∂ϑp = 0

∂ϑm1 = −αpm1 +
1
τm2

∂ϑm2 = +αpm1 − 1
τm2

Consider now the total population density m = m1 +m2. This is a slow variable, indeed

∂ϑm = ∂ϑm1 + ∂ϑm2 = 0.

The equilibrium of the fast dynamics is

0 = −αpm1 +
1

τ
(m−m1) ⇒ m1 =

m

ταp+ 1

We now write the slow equations for p and m:∂tm = Dm∂xxm1 = Dm∂xx

(
m

ταp+1

)
∂tp = Dp∂xxp− q∂x (p∂xm1) = Dp∂xxp− q∂x

(
p∂x

(
m

ταp+1

)) (1)
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We impose zero-flux boundary conditions. The boundary condition for m gives

0 = −Dm∂x

(
m

ταp+ 1

)
⇔ ∂x

(
m

ταp+ 1

)
= 0 for x = 0, L (2)

and we can use this to simplify the boundary condition for p:

0 = −Dp∂xp+ qp∂x

(
m

ταp+ 1

)
= −Dp∂xp⇔ ∂xp = 0 for x = 0, L

We can now go back to (2) and simplify further:

0 = ∂x

(
m

ταp+ 1

)
=

(ταp+ 1)∂xm− ταm∂xp
(ταp+ 1)2

=
∂xm

ταp+ 1
⇔ ∂xm = 0 for x = 0, L

(c) Consider system (1). For the first equation,

∂tm = Dm∂xx

(
m

ταp+ 1

)
= ∂x

(
Dm

(ταp+ 1)∂xm− ταm∂xp
(ταp+ 1)2

)
For the second equation,

∂tp = Dp∂xxp− ∂x
(
qp∂x

(ταp+ 1)∂xm− ταm∂xp
(ταp+ 1)2

)
Therefore, we can rewrite system (1) as{

∂tm = −∂x [−D1(p)∂xm+K(p)m∂xp]

∂tp = −∂x [−D2∂xp+Q1(p)p∂xm+Q2(m, p)p∂xp]

with

D1(p) =
Dm

ταp+ 1
density-dependent diffusion of prey

K(p) =
Dmτα

(ταp+ 1)2
density-dependent positive taxis

D2 = Dp diffusion of predator

Q1(p) =
q

ταp+ 1
density-dependent positive taxis

Q2(m, p) = −
qταm

(ταp+ 1)2
density-dependent negative auto-taxis

Exercise 23

Consider the predator–prey system

ε∂tm = a− bm− βmp
∂tp = γβmp− δp+D∂xxp

with 0 < ε� 1.
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(a) The quasi-equilibrium of the m-dynamics is (assuming p constant)

0 = a− bm− βmp⇔ m(p) =
a

b+ βp

Therefore, the equation for p (slow dynamics) becomes

∂tp =
aγβp

b+ βp
− δp+D∂xxp, t ≥ 0, x ∈ R

(b) We look for travelling wave solutions, i.e., we want to check if the equations admits
a solution of the form

p(x, t) = p(x− ct). (3)

We substitute (3) into the equation for p and we get

−cp′ = aγβp

b+ βp
− δp+Dp′′

We are not interested in solving explicitly this second-order equation. Instead, we want
to find travelling waves that satisfy suitable boundary conditions: we are interested in the
qualitative behaviour of the system. Therefore we look at the phase plane of the system
of equations

p′ = H

H ′ =
δ

D
p− aγβp

D(b+ βp)
− c

D
H

The equilibria are (0, 0) and (p, 0) such that

δ =
aγβ

b+ βp
⇔ p =

aγβ − bδ
βδ

Notice that p > 0 under the assumption aγβ > bδ. The isoclines are

p′ = 0⇔H = 0

H ′ = 0⇔H =
p

c

(
δ − aγβ

b+ βp

)
Notice that the shape of the H-isocline and the sign of the vertical arrows depend on the
sign of the speed c: in order to plot the phase-plane, we separate two cases (see picture
below). Since we are looking for travelling waves, we want to look if the system admits
some orbits that are bounded : for instance, orbits that go from one equilibrium to the
other, or turn around in a periodic orbit.

In both cases, from the arrows it is easy to see that the equilibrium (p, 0) is a saddle
point. What about the origin (0, 0)? The arrows are turning around, so we cannot conclude
about stability from the phase plane. We compute the jacobian and we apply the trace–
determinant criterion for two-dimensional systems.

J(0,0) =

(
0 1

δ
D −

aγβD(b+βp)−aγβpDβ
D2(b+βp)2

− c
D

)∣∣∣
(0,0)

=

(
0 1

δb−aγβ
Db − c

D

)
trJ = − c

D
(sign depends on c)

det J =
aγβ − bδ
Db

> 0.
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If c > 0, the origin is stable. Therefore, the only possible waves p(x − ct) are those
that depart from (p, 0) and end up at (0, 0). This means that (at every time t) such waves
satisfy the boundary conditions

p(−∞) = p, p(+∞) = 0,

i.e., the population is at the stable equilibrium on the left spatial boundary, and there is no
population to the right. Moreover, since we are considering positive speed c > 0, the wave
is moving towards the right, and therefore the population is invading the spatial domain
(see picture below). To ensure that such a travelling wave exists and it is biologically
acceptable, we should check that the corresponding orbit does not become negative: i.e.,
we should check if the origin is a stable node or focus. In this case we have

• stable node if det < tr2/4 ⇔ c >
√

4D
b (aγβ − δb) =: c∗. In this case, by looking at

the arrows in the phase plane we conclude that a possible travelling wave is the orbit
that departs from (p, 0) goes down and left, then crosses the H−isocline horizontally
to the left and ends up at (0, 0) without crossing the vertical axis. Therefore, we
should check that the unstable manifold of (p, 0) and the stable manifold of (0, 0) are
connected (the arrows are not enough).

In order to prove that the orbit departing from (p, 0) actually ends up in (0, 0), we
could try to find a “trapping region” and then use Poincaré–Bendixson theorem to
prove that the orbits cannot cross the vertical axis. We should find a curve H = g(p)
passing through (0, 0) and such that H ′/p′ < g′(p) for p > 0, H < 0, so that the orbit
is “more steep” than the curve. (but in this case it is nontrivial)

• stable focus if det > tr2/4⇔ 0 < c < c∗. In this case no travelling wave is possible,
because it would cross the vertical axis and therefore p would become negative.

If c < 0, the origin is unstable. In this case, the only possible waves are those departing
from (0, 0) and ending up in (p, 0). Such waves satisfy the boundary conditions

p(−∞) = 0, p(+∞) = p,

i.e., the population is absent on the left boundary, and it is at the positive equilibrium
on the right. Moreover, since the speed is negative, this means that the wave is moving
towards the left, and the population is again invading the spatial domain (this time from
right to left). The situation is analogous to the previous one: we should check that (0, 0)
is a node, and then check that the unstable manifold departing from (0, 0) connects to the
stable manifold of (p, 0).

If c = 0 we are actually looking for stationary waves p = p(x), i.e., equilibria of the
system. In this case, the isoclines are

p′ = 0⇔H = 0

H ′ = 0⇔p

c

(
δ − aγβ

b+ βp

)
= 0⇔ p = 0 or p = p.

The origin is a (stable or unstable) focus, and therefore every orbit in the phase-plane
satisfying finite boundary conditions crosses the vertical axis and becomes biologically
impossible. Therefore, there are no stationary waves except the trivial ones p(x) = 0 and
p(x) = p.
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