MATHEMATICAL MODELLING

HOMEWORK SOLUTIONS

November 18, 2015

I will solve Exercise 21 step-by-step and then provide the results for Exercise 19 and 20. I hope you can reproduce the derivation yourself.

Exercise 21

(a) Type of movement: diffusion with constant coefficient and positive taxis ($J_{\text {taxis }}=$ $\left.a n \partial_{x} n\right)$. For instance, animals in a reservoir with fences around, such that they cannot go out and they tend to move towards high densities of individuals (positive taxis).
(b) Consider a constant equilibrium $n(x)=\bar{n}<\frac{D}{a}$.

Remark 1. You can verify that every positive constant \bar{n} is an equilibrium of the system. We can choose a particular one, for instance, by normalizing the total population density $\int_{0}^{L} \bar{n} d x$ or the average population density $\frac{1}{L} \int_{0}^{L} \bar{n} d x$.

To linearize the equation, we consider a perturbation $u(x, t)$ that is \mathcal{C}^{2}-small, in the sense that $|u(x, t)|,\left|\partial_{x} u(x, t)\right|$ and $\left|\partial_{x x} u(x, t)\right|$ are uniformly small (say $\left.o(\varepsilon)\right)$ in the domain $x \in[0, L]$, for all $t \geq 0$.

Substitute $n(x, t)=\bar{n}+u(x, t)$ into the original problem.

$$
\left\{\begin{array}{l}
\partial_{t} u=D \partial_{x x} u-a \partial_{x}\left((\bar{n}+u) \partial_{x} u\right)=D \partial_{x x} u-a \bar{n} \partial_{x x} u-a \underbrace{\left(\left(\partial_{x} u\right)^{2}+u \partial_{x x} u\right)}_{o\left(\varepsilon^{2}\right)} \\
\left.0=D \partial_{x} u-a(\bar{n}+u) \partial_{x} u\right)=D \partial_{x} u-a \bar{n} \partial_{x} u-\underbrace{a u \partial_{x} u}_{o\left(\varepsilon^{2}\right)} \quad \text { for } x=0, L .
\end{array}\right.
$$

Since $u(x, t)$ is \mathcal{C}^{2}-small, the terms $\left(\partial_{x} u\right)^{2}, u \partial_{x x} u$, and $u \partial_{x} u$ are $o\left(\varepsilon^{2}\right)$, so they are negligible. Therefore, the linearized system is

$$
\left\{\begin{array}{l}
\partial_{t} u=(D-a \bar{n}) \partial_{x x} u \\
(D-a \bar{n}) \partial_{x} u=0 \quad \text { for } x=0, L
\end{array}\right.
$$

Remember that we assume $D-a \bar{n}>0$. We now take a trial solution of the form $u(x, t)=$ $v(x) e^{\lambda t}$ with $\lambda, v(x) \in \mathbb{C}$, and plug into the linearized system to obtain the characteristic equation for λ,

$$
\left\{\begin{array}{l}
\lambda v(x)=(D-a \bar{n}) v^{\prime \prime}(x) \tag{1}\\
(D-a \bar{n}) v^{\prime}(x)=0 \quad \text { for } x=0, L
\end{array}\right.
$$

The first equation is a second order linear ODE with constant coefficients,

$$
(D-a \bar{n}) v^{\prime \prime}(x)-\lambda v(x)=0
$$

We solve it by the characteristic polynomial

$$
(D-a \bar{n}) y^{2}-\lambda=0 \quad \Leftrightarrow \quad y_{1,2}= \pm \sqrt{\frac{\lambda}{D-a \bar{n}}}
$$

Therefore, the solutions are

$$
\begin{equation*}
v(x)=A e^{y_{1} x}+B e^{y_{2} x}, \quad A, B \in \mathbb{R} \tag{2}
\end{equation*}
$$

To determine A and B, we impose the boundary conditions:

$$
\begin{align*}
(D-a \bar{n}) v^{\prime}(x)=0 \text { at } x=0, L & \Leftrightarrow\left\{\begin{array}{l}
(D-a \bar{n})\left(A y_{1}+B y_{2}\right)=0 \\
(D-a \bar{n})\left(A y_{1} e^{y_{1} L}+B y_{2} e^{y_{2} L}\right)=0
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
B y_{2}=-A y_{1} \\
e^{y_{1} L}=e^{y_{2} L}
\end{array}\right. \tag{3}
\end{align*}
$$

We want to solve the system for $\lambda \in \mathbb{C}$ (remember that y_{1}, y_{2} depend on λ).

$$
\begin{gathered}
e^{y_{1} L}=e^{y_{2} L} \Leftrightarrow y_{1} L=y_{2} L+2 k \pi i, \quad \text { for some } k \in \mathbb{Z} \\
\Leftrightarrow L \sqrt{\frac{\lambda_{k}}{D-a \bar{n}}}=-L \sqrt{\frac{\lambda_{k}}{D-a \bar{n}}}+2 k \pi i \Leftrightarrow \sqrt{\frac{\lambda_{k}}{D-a \bar{n}}}=\frac{k \pi i}{L} \Leftrightarrow \lambda_{k}=-(D-a \bar{n}) \frac{k^{2} \pi^{2}}{L^{2}}
\end{gathered}
$$

Be careful: it might be that some λ_{k} correspond to $v(x)=0$, and this is NOT a proper eigenfunction! In order to determine which λ_{k} are true eigenvalues, we should check that the corresponding eigenfunction $v_{k}(x)$ is nonzero. For a given λ_{k}, from (2) and (3) follows that

$$
v_{k}(x)=A\left(e^{i \frac{k \pi}{L} x}+e^{-i \frac{k \pi}{L} x}\right)=\frac{A}{2} \cos \left(\frac{k \pi}{L} x\right)
$$

The function $v_{k}(x)$ is nonzero for any $k \in \mathbb{R}$, therefore any λ_{k} can be an eigenvalue. BUT, for $k=0$ we have $v(x)=\frac{A}{2} \cos 0=\frac{A}{2}$ and this perturbation is not permissible because it changes the total population density, while in the original problem there is conservation of total population density. Therefore we exclude $\lambda=0$ from the eigenvalues and, since all the other $\lambda_{k}, k \neq 0$ are real and negative, we conclude that the equilibrium \bar{n} is stable.
(c) If $\bar{n}>\frac{D}{a}$ the previous analysis holds unchanged, and the eigenvalues are

$$
\lambda_{k}=-(D-a \bar{n}) \frac{k^{2} \pi^{2}}{L^{2}}=(a \bar{n}-D) \frac{k^{2} \pi^{2}}{L^{2}}>0
$$

for any $k \in \mathbb{Z}$. In this case all the eigenvalues are real and positive, therefore the equilibrium is unstable.

After Exercise 21, I would like to complete the

Scheme for local stability analysis of spatial systems

1. Linearize the problem around the equilibrium $\bar{n}(x)$: consider a perturbation $u(x, t)$ that is \mathcal{C}^{2}-small (i.e., $|u|,\left|\partial_{x} u\right|$ and $\left|\partial_{x x} u\right|$ are small) and plug $n(x, t)=\bar{n}(x)+u(x, t)$ into the original problem. Simplify the equation using the equilibrium conditions. Keep only terms of first order in $|u|$ and neglect higher order terms. Remember that the linearized equation is a linear equation. Remember also to linearize the boundary conditions.
2. Consider a trial solution of the form $u(x, t)=v(x) e^{\lambda t}$, where $\lambda \in \mathbb{C}$ is an eigenvalue and $v(x) \in \mathbb{C}$ is the corresponding eigenfunction, and substitute this into the linearized problem. You will get the characteristic equation for λ and $v(x)$.
3. Solve the characteristic equation for λ. Determine the true eigenvalues by checking that the corresponding eigenfunction $v(x)$ is nonzero. If there is conservation of the total density in the original system, be sure that also the perturbations must conserve the total density. Perturbations such that $\int_{0}^{L} v(x) d x \neq 0$ are not proper eigenfunctions.
The equilibrium $\bar{n}(x)$ is stable if all the eigenvalues have negative real part; it is unstable if there exists at least one eigenvalue with positive real part; if the maximum real part is exactly equal to zero, it is not possible to decide about stability.

Exercise 19

(a) Exponential growth, so we can think at a bacteria population that diffuses in a region and it is removed at the boundary. Maybe some mould or fungus on a delimited substrate region.
(b) $n=0$ is an equilibrium. Linearization around $n=0$ gives

$$
\begin{cases}\partial_{t} u=a u+D \partial_{x x} u \\ u=0 & \text { for } x=0, L\end{cases}
$$

Trial solution $v(x) e^{\lambda t}$ gives the characteristic equation

$$
\begin{cases}\lambda v(x)=a v(x)+D v^{\prime \prime}(x) \\ v(x)=0 & \text { for } x=0, L\end{cases}
$$

The eigenvalues are

$$
\lambda_{k}=a-\frac{D k^{2} \pi^{2}}{L^{2}}, \quad k=1,2, \ldots
$$

with corresponding eigenfunctions

$$
v_{k}(x)=A\left(e^{\frac{i k \pi}{L} x}-e^{-\frac{i k \pi}{L} x}\right)=-2 A i \sin \left(\frac{k \pi}{L} x\right)
$$

Notice that $v_{0}(x)=0$, hence $k=0$ does not give a proper eigenvalue: we take $k \geq 1$. The eigenvalues are real and the dominant one is $\lambda_{1}=a-\frac{D \pi^{2}}{L^{2}}$, therefore the equilibrium $n=0$ is stable if $a<\frac{D \pi^{2}}{L^{2}}$, unstable if $a>\frac{D \pi^{2}}{L^{2}}$.

Exercise 20

(a) Logistic growth, so we can think at an animal or plant population. For instance, some trees in a region with a rock boundary (reflecting) and a grown field at the other boundary (men keep it clean from seeds: absorbing). Only diffusive movement present.
(b) $n=0$ is an equilibrium. Linearization around $n=0$ gives

$$
\left\{\begin{array}{l}
\partial_{t} u=r u+D \partial_{x x} u \\
u(0)=0, \quad u^{\prime}(L)=0
\end{array}\right.
$$

Trial solution $v(x) e^{\lambda t}$ gives the characteristic equation

$$
\left\{\begin{array}{l}
\lambda v(x)=r v(x)+D v^{\prime \prime}(x) \\
v(x)=0, \quad v^{\prime}(L)=0
\end{array}\right.
$$

The eigenvalues are

$$
\lambda_{k}=r-\frac{D \pi^{2}(2 k+1)^{2}}{4 L^{2}}, \quad k \in \mathbb{Z}, k \neq 0
$$

with corresponding eigenfunctions

$$
v_{k}(x)=A\left(e^{\frac{i k \pi}{L} x}-e^{-\frac{i k \pi}{L} x}\right)=-2 A i \sin \left(\frac{k \pi}{L} x\right) .
$$

Notice that $v_{0}(x)=0$, hence $k=0$ does not give a proper eigenvalue: we take $k \neq 0$. The eigenvalues are real and the dominant one is $\lambda_{-1}=r-\frac{D \pi^{2}}{4 L^{2}}$, therefore the equilibrium $n=0$ is stable if $r<\frac{D \pi^{2}}{4 L^{2}}$, unstable if $r>\frac{D \pi^{2}}{4 L^{2}}$.

