MATHEMATICAL MODELLING

HOMEWORK SOLUTIONS

October 28, 2015

Exercise 15

Host larvae are produced at a constant per capita rate α during the season instead of a single reproductive burst. The adult host density is constant (equal to x_{n}) during the season.
(a) Within-season dynamics

$$
\left\{\begin{array}{ll}
\frac{d v_{0}(t)}{d t}=\alpha x_{n}-\beta y_{n} v_{0}(t), & \\
v_{0}(0)=0 \\
\frac{d v_{1}(t)}{d t}=+\beta y_{n} v_{0}(t), &
\end{array} v_{1}(0)=0\right.
$$

The solution of the system is (solution of a linear ODE by variation of constants)

$$
\begin{aligned}
& v_{0}(t)=\int_{0}^{t} e^{-\beta y_{n}(t-s)} \alpha x_{n} d s=\frac{\alpha x_{n}}{\beta y_{n}}\left(1-e^{-\beta y_{n} t}\right) \\
& v_{1}(t)=\alpha x_{n} \int_{0}^{t}\left(1-e^{-\beta y_{n} s}\right) d s=\alpha x_{n}\left(t-\frac{1-e^{-\beta y_{n} t}}{\beta y_{n}}\right)
\end{aligned}
$$

(b) Between-season dynamics

$$
\left\{\begin{array}{l}
x_{n+1}=v_{0}(1)=\frac{\alpha x_{n}}{\beta y_{n}}\left(1-e^{-\beta y_{n}}\right) \tag{1}\\
y_{n+1}=v_{1}(1)=\frac{\alpha x_{n}}{\beta y_{n}}\left(\beta y_{n}-1+e^{-\beta y_{n}}\right)
\end{array}\right.
$$

(c) Positive equilibrium (\bar{x}, \bar{y}) must satisfy

$$
\left\{\begin{array}{l}
\bar{x}=\frac{\alpha \bar{x}}{\beta \bar{y}}\left(1-e^{-\beta \bar{y}}\right) \\
\bar{y}=\frac{\alpha \bar{x}}{\beta \bar{y}}\left(\beta \bar{y}-1+e^{-\beta \bar{y}}\right)
\end{array}\right.
$$

and, by simplifying, we get the equations

$$
\left\{\begin{array}{l}
\bar{y}=\frac{\alpha}{\beta}\left(1-e^{-\beta \bar{y}}\right) \\
\bar{y}=(\alpha-1) \bar{x}
\end{array}\right.
$$

By studying graphically the first equation, we observe that it admits a positive solution if and only if the derivative with respect to y of the function $h(y):=\frac{\alpha}{\beta}\left(1-e^{-\beta y}\right)$ in 0
is greater than 1 , if and only if $\alpha>1$. Under the same condition, we can also invert the second equation.

Therefore, we conclude that system (1) admits a positive equilibrium (\bar{x}, \bar{y}) if and only if $\alpha>1$, and in this case it is given by the equations

$$
\left\{\begin{array}{l}
\bar{y}=\frac{\alpha}{\beta}\left(1-e^{-\beta \bar{y}}\right) \tag{2}\\
\bar{x}=\frac{\bar{y}}{\alpha-1}
\end{array}\right.
$$

(d) Stability of (\bar{x}, \bar{y}). Since this is a planar system, we cannot use a graphical method like the cobweb method in one dimension. Therefore, we need to use local stability analysis. Consider system (1) and define f, g such that

$$
\begin{aligned}
& f(x, y)=\frac{\alpha x}{\beta y}\left(1-e^{-\beta y}\right) \\
& g(x, y)=\frac{\alpha x}{\beta y}\left(\beta y-1+e^{-\beta y}\right)
\end{aligned}
$$

The jacobian at the equilibrium (\bar{x}, \bar{y}) is given by

$$
J=\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)_{(\bar{x}, \bar{y})}=\left(\begin{array}{cc}
\frac{\alpha}{\beta y}\left(1-e^{-\beta y}\right) & \alpha x \frac{\beta y e^{-\beta y}-1+e^{-\beta y}}{\beta y^{2}} \\
\frac{\alpha}{\beta y}\left(\beta y-1+e^{-\beta y}\right) & \alpha x \frac{-\beta y e^{-\beta y}+1-e^{-\beta y}}{\beta y^{2}}
\end{array}\right)_{(\bar{x}, \bar{y})}
$$

and, by using the equilibrium conditions (2), we can simplify

$$
J=\left(\begin{array}{cc}
1 & 1-\beta \bar{x} \\
\alpha-1 & -1+\beta \bar{x}
\end{array}\right)
$$

In order to apply the stability criterion for discrete planar systems (triangle of stability, see picture below) we compute trace and determinant:

$$
\begin{aligned}
\operatorname{tr}(J) & =\beta \bar{x}>0 \\
\operatorname{det}(J) & =\alpha(\beta \bar{x}-1)
\end{aligned}
$$

The equilibrium is stable if and only if $(\operatorname{tr}(J), \operatorname{det}(J))$ lies inside the triangle of stability. Since $\operatorname{tr}(J)>0$, this is true if and only if

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{tr}(J)<2 \\
\operatorname{det}(J)>\operatorname{tr}(J)-1
\end{array}\right.
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
\beta \bar{x}<2 \\
\alpha(\beta \bar{x}-1)>\beta \bar{x}-1
\end{array}\right\}
$$

Therefore, we conclude that a positive equilibrium (\bar{x}, \bar{y}) exists if and only if $\alpha>1$, and it is stable if, moreover, $1<\beta \bar{x}<2$.

Exercise 16

Reproductive burst at the beginning of the season. Adult hosts cannibalise on their larvae (density-dependent interaction with rate γ). For simplicity, I write the complete analysis of the model in which adults cannibalise only on non-parasitized larvae. The case of adult cannibalising also on parasitized larvae was shown in the exercise class.

(a) Within-season dynamics

$$
\begin{cases}\frac{d v_{0}(t)}{d t}=-\beta y_{n} v_{0}(t)-\gamma x_{n} v_{0}(t), & \\ v_{0}(0)=\alpha x_{n} \\ \frac{d v_{1}(t)}{d t}=+\beta y_{n} v_{0}(t), & \end{cases}
$$

The solution of the linear system is

$$
\begin{aligned}
& v_{0}(t)=\alpha x_{n} e^{-\left(\beta y_{n}+\gamma x_{n}\right) t} \\
& v_{1}(t)=\alpha x_{n}\left(1-e^{-\left(\beta y_{n}+\gamma x_{n}\right) t}\right)
\end{aligned}
$$

Remark 1. Assuming, instead, that adult cannibalise also on parasitized larvae, the within-season dynamics reads

$$
\begin{cases}\frac{d v_{0}(t)}{d t}=-\beta y_{n} v_{0}(t)-\gamma x_{n} v_{0}(t), & v_{0}(0)=\alpha x_{n} \\ \frac{d v_{1}(t)}{d t}=+\beta y_{n} v_{0}(t)-\gamma x_{n} v_{1}(t), & \\ v_{1}(0)=0\end{cases}
$$

and the analysis follows the same steps, maybe with a little more difficult calculations.

(b) Between-season dynamics

$$
\left\{\begin{array}{l}
x_{n+1}=v_{0}(1)=\alpha x_{n} e^{-\beta y_{n}-\gamma x_{n}}=: f\left(x_{n}, y_{n}\right) \tag{3}\\
y_{n+1}=v_{1}(1)=\alpha x_{n}\left(1-e^{-\beta y_{n}-\gamma x_{n}}\right)=: g\left(x_{n}, y_{n}\right)
\end{array}\right.
$$

Assume $x_{n} \rightarrow \infty$. Then $f\left(x_{n}, y_{n}\right) \rightarrow 0$, contradiction. Therefore x_{n} is bounded. Since $y_{n}<\alpha x_{n}$ for any value of x_{n}, y_{n} is also bounded.
(c) Positive equilibrium (\bar{x}, \bar{y}) must satisfy

$$
\left\{\begin{array}{l}
1=\alpha e^{-\beta \bar{y}-\gamma \bar{x}} \\
\bar{y}=\alpha \bar{x}\left(1-e^{-\beta \bar{y}-\gamma \bar{x}}\right)=(\alpha-1) \bar{x}
\end{array}\right.
$$

A positive equilibrium exists if $\alpha>1$ and if there exists a positive solution to the equation

$$
1=\alpha e^{-(\beta(\alpha-1)+\gamma) \bar{x}}
$$

When $\alpha>1$, the right-hand side is a decreasing exponential, the equation admits a positive solution and we can calculate the equilibrium explicitly:

$$
\begin{align*}
\bar{x} & =\frac{\log \alpha}{\beta(\alpha-1)+\gamma} \tag{4}\\
\bar{y} & =\frac{(\alpha-1) \log \alpha}{\beta(\alpha-1)+\gamma} \tag{5}
\end{align*}
$$

(d) Stability of (\bar{x}, \bar{y}). The jacobian at the equilibrium (\bar{x}, \bar{y}) (simplified using the equilibrium conditions for $\bar{x}, \bar{y})$ is

$$
\begin{gathered}
J=\left(\begin{array}{cc}
\alpha e^{-\beta \bar{y}-\gamma \bar{x}}(1-\gamma \bar{x}) & -\alpha \beta \bar{x} e^{-\beta \bar{y}-\gamma \bar{x}} \\
\alpha-\alpha e^{-\beta \bar{y}-\gamma \bar{x}}(1-\gamma \bar{x}) & \alpha \beta \bar{x} e^{-\beta \bar{y}-\gamma \bar{x}}
\end{array}\right)=\left(\begin{array}{cc}
1-\gamma \bar{x} & -\beta \bar{x} \\
\alpha-1+\gamma \bar{x} & \beta \bar{x}
\end{array}\right) \\
\operatorname{tr}(J)=1-\gamma \bar{x}+\beta \bar{x} \\
\operatorname{det}(J)=\alpha \beta \bar{x}>0
\end{gathered}
$$

The equilibrium is stable if and only if $(\operatorname{tr}(J)$, $\operatorname{det}(J))$ lies inside the triangle of stability, if and only if

$$
\left.\begin{array}{c}
\left\{\begin{array} { l }
{ - 1 < \operatorname { d e t } (J) < 1 } \\
{ \operatorname { d e t } (J) > \operatorname { t r } (J) - 1 } \\
{ \operatorname { d e t } (J) > - \operatorname { t r } (J) - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\frac{\gamma}{\beta}>\alpha \log \alpha-\alpha+1 \\
(\alpha-1) \beta>-\gamma \\
((\alpha+1) \beta-\gamma) \bar{x}>-2
\end{array} \quad \text { always true for } \alpha>1\right.\right.
\end{array}\right\} \begin{aligned}
& \frac{\gamma}{\beta}>\alpha \log \alpha-\alpha+1 \\
& \left(\alpha+1-\frac{\gamma}{\beta}\right) \log \alpha>-2\left(\alpha-1+\frac{\gamma}{\beta}\right)
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
\frac{\gamma}{\beta}>\alpha \log \alpha-\alpha+1 \\
\frac{\gamma}{\beta}(2-\log \alpha)>2-\log \alpha-\alpha(2+\log \alpha)
\end{array}\right\} \begin{aligned}
& \log \alpha<2 \\
& \frac{\gamma}{\beta}>\alpha \log \alpha-\alpha+1 \\
& \frac{\gamma}{\beta}>1-\alpha \frac{2+\log \alpha}{2-\log \alpha}
\end{aligned} \quad \text { or }\left\{\begin{array}{l}
\log \alpha>2 \\
\frac{\gamma}{\beta}>\alpha \log \alpha-\alpha+1 \\
\frac{\gamma}{\beta}<1+\alpha \frac{2+\log \alpha}{\log \alpha-2}
\end{array}\right.
$$

In conclusion: the positive equilibrium (\bar{x}, \bar{y}) exists (given by (4)-(5)) if and only if $\alpha>1$; the positive equilibrium is stable if, moreover,

$$
\left\{\begin{array} { l }
{ 1 < \alpha < e ^ { 2 } } \\
{ \frac { \gamma } { \beta } > \operatorname { m a x } \{ \alpha \operatorname { l o g } \alpha - \alpha + 1 , 1 + \alpha \frac { 2 + \operatorname { l o g } \alpha } { \operatorname { l o g } \alpha - 2 } \} }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
e^{2}<\alpha<e^{4} \\
\alpha \log \alpha-\alpha+1<\frac{\gamma}{\beta}<1+\alpha \frac{2+\log \alpha}{\log \alpha-2}
\end{array}\right.\right.
$$

Note that the condition $\alpha<e^{4}$ comes from requiring that: $\alpha \log \alpha-\alpha+1<1+\alpha \frac{2+\log \alpha}{\log \alpha-2}$.

