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Exercise 15

Host larvae are produced at a constant per capita rate α during the season instead of
a single reproductive burst. The adult host density is constant (equal to xn) during the
season.

(a) Within-season dynamics
dv0(t)

dt
= αxn − βynv0(t), v0(0) = 0

dv1(t)

dt
= +βynv0(t), v1(0) = 0

The solution of the system is (solution of a linear ODE by variation of constants)

v0(t) =

∫ t

0
e−βyn(t−s)αxnds =

αxn
βyn

(
1− e−βynt

)
v1(t) = αxn

∫ t

0

(
1− e−βyns

)
ds = αxn

(
t− 1− e−βynt

βyn

)
(b) Between-season dynamics{

xn+1 = v0(1) =
αxn
βyn

(
1− e−βyn

)
yn+1 = v1(1) =

αxn
βyn

(
βyn − 1 + e−βyn

) (1)

(c) Positive equilibrium (x, y) must satisfy{
x = αx

βy

(
1− e−βy

)
y = αx

βy

(
βy − 1 + e−βy

)
and, by simplifying, we get the equations{

y = α
β

(
1− e−βy

)
y = (α− 1)x

By studying graphically the first equation, we observe that it admits a positive solution
if and only if the derivative with respect to y of the function h(y) := α

β

(
1− e−βy

)
in 0
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is greater than 1, if and only if α > 1. Under the same condition, we can also invert the
second equation.

Therefore, we conclude that system (1) admits a positive equilibrium (x, y) if and only
if α > 1, and in this case it is given by the equations{

y = α
β

(
1− e−βy

)
x = y

α−1

(2)

(d) Stability of (x, y). Since this is a planar system, we cannot use a graphical method
like the cobweb method in one dimension. Therefore, we need to use local stability analysis.
Consider system (1) and define f, g such that

f(x, y) =
αx

βy

(
1− e−βy

)
g(x, y) =

αx

βy

(
βy − 1 + e−βy

)
The jacobian at the equilibrium (x, y) is given by

J =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x,y)

=

(
α
βy

(
1− e−βy

)
αxβye

−βy−1+e−βy

βy2

α
βy

(
βy − 1 + e−βy

)
αx−βye−βy+1−e−βy

βy2

)
(x,y)

and, by using the equilibrium conditions (2), we can simplify

J =

(
1 1− βx

α− 1 −1 + βx

)
In order to apply the stability criterion for discrete planar systems (triangle of stability,
see picture below) we compute trace and determinant:

tr(J) = βx > 0

det(J) = α(βx− 1)

The equilibrium is stable if and only if (tr(J),det(J)) lies inside the triangle of stability.
Since tr(J) > 0, this is true if and only if{

tr(J) < 2

det(J) > tr(J)− 1
⇔

{
βx < 2

α(βx− 1) > βx− 1

⇔

{
0 < βx < 1

α < 1 NO!
or

{
1 < βx < 2

α > 1 ok

Therefore, we conclude that a positive equilibrium (x, y) exists if and only if α > 1,
and it is stable if, moreover, 1 < βx < 2.

Exercise 16

Reproductive burst at the beginning of the season. Adult hosts cannibalise on their
larvae (density-dependent interaction with rate γ). For simplicity, I write the complete
analysis of the model in which adults cannibalise only on non-parasitized larvae. The case
of adult cannibalising also on parasitized larvae was shown in the exercise class.
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(a) Within-season dynamics
dv0(t)

dt
= −βynv0(t)− γxnv0(t), v0(0) = αxn

dv1(t)

dt
= +βynv0(t), v1(0) = 0

The solution of the linear system is

v0(t) = αxne
−(βyn+γxn)t

v1(t) = αxn

(
1− e−(βyn+γxn)t

)
Remark 1. Assuming, instead, that adult cannibalise also on parasitized larvae, the
within-season dynamics reads

dv0(t)

dt
= −βynv0(t)− γxnv0(t), v0(0) = αxn

dv1(t)

dt
= +βynv0(t)− γxnv1(t), v1(0) = 0

and the analysis follows the same steps, maybe with a little more difficult calculations.

(b) Between-season dynamics{
xn+1 = v0(1) = αxne

−βyn−γxn =: f(xn, yn)

yn+1 = v1(1) = αxn
(
1− e−βyn−γxn

)
=: g(xn, yn)

(3)

Assume xn → ∞. Then f(xn, yn) → 0, contradiction. Therefore xn is bounded. Since
yn < αxn for any value of xn, yn is also bounded.

(c) Positive equilibrium (x, y) must satisfy{
1 = αe−βy−γx

y = αx
(
1− e−βy−γx

)
= (α− 1)x

A positive equilibrium exists if α > 1 and if there exists a positive solution to the equation

1 = αe−(β(α−1)+γ)x

When α > 1, the right-hand side is a decreasing exponential, the equation admits a positive
solution and we can calculate the equilibrium explicitly:

x =
logα

β(α− 1) + γ
(4)

y =
(α− 1) logα

β(α− 1) + γ
(5)

3



(d) Stability of (x, y). The jacobian at the equilibrium (x, y) (simplified using the
equilibrium conditions for x, y) is

J =

(
αe−βy−γx(1− γx) −αβxe−βy−γx

α− αe−βy−γx(1− γx) αβxe−βy−γx

)
=

(
1− γx −βx

α− 1 + γx βx

)
tr(J) = 1− γx+ βx

det(J) = αβx > 0

The equilibrium is stable if and only if (tr(J),det(J)) lies inside the triangle of stability,
if and only if

−1 < det(J) < 1

det(J) > tr(J)− 1

det(J) > −tr(J)− 1

⇔


γ
β > α logα− α+ 1

(α− 1)β > −γ always true for α > 1

((α+ 1)β − γ)x > −2

⇔

{
γ
β > α logα− α+ 1

(α+ 1− γ
β ) logα > −2(α− 1 + γ

β )
⇔

{
γ
β > α logα− α+ 1
γ
β (2− logα) > 2− logα− α(2 + logα)

⇔


logα < 2
γ
β > α logα− α+ 1
γ
β > 1− α2+logα

2−logα

or


logα > 2
γ
β > α logα− α+ 1
γ
β < 1 + α2+logα

logα−2

In conclusion: the positive equilibrium (x, y) exists (given by (4)–(5)) if and only if
α > 1; the positive equilibrium is stable if, moreover,{

1 < α < e2

γ
β > max

{
α logα− α+ 1, 1 + α2+logα

logα−2

} or

{
e2 < α < e4

α logα− α+ 1 < γ
β < 1 + α2+logα

logα−2

Note that the condition α < e4 comes from requiring that: α logα− α+ 1 < 1 + α2+logα
logα−2 .

tr

det

(2, 1)(−2, 1)

(0,−1)

det = −1− tr det = −1 + tr

triangle of stability

4


