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Exercise 12

This is an example of juvenile-juvenile interference competition.

Within-season dynamics. Let x, be the number of adults at the beginning of season
n, and let and denote adult and juvenile individuals, respectively. I assume that
juveniles die only due to competition (no natural death within the season) and use the rate
2 instead of 7 (for simplicity of notation).
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The within-season dynamics is described by
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The first equation gives U(t) = x,, for all ¢ € [0,1]. We can solve the second equation by

separation of variables
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For the left-hand side we now use the integration formula
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Therefore,
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Assume  / z1-V,(t) < 1. We plug into (1) and obtain
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Note that V,,(0) = 0 and , /52-V;,(t) < 1 for all ¢ > 0, therefore we do not need to consider
the case opposite case (y/z2-Va(t) > 1).

Between-season dynamics. Let o denote the fraction of juveniles that survive from
one season to the next and become adults. Therefore,
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Equilibria and stability. The equilibria are x = 0 and z such that
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In order to check if there exist a positive Z satisfying (2), we check if the two curves
e2w_1 e . . . .. .
g(w) = w and h(w) = Bo Sy have a positive intersection (see picture). This is equivalent
to check that h(w) has a derivative greater than 1 in 0.
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Therefore,
dz >0« fo > 1.
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The function f(z,) has a similar shape to the graph of h(w) (but with no horizontal
asymptote). Therefore, if a positive equilibrium exist, it is easy to verify its stability by
using the cobweb method.

Exercise 13
Consider the Ricker model
Tpil = axpe . (3)

The equilibrium condition is
1=ae ", (4)

and we have seen in the lecture that the stability of Z depends only on the coefficient a.
Consider now the two different derivations.



Adult-juvenile competition with reproductive burst. In class we solved explicitly
the within-season dynamics and found

v (t) = Brpe 7 rt

Assume that the season length is 7. Then, the between-season dynamics is given by (3)
with
a=op, b=~T.

From the equilibrium condition (4) we observe that the value of Z depends on the season
length T (the higher is T, the smaller is the equilibrium density z). Instead, since a does
not depend on T, the stability of Z is also independent of 7.

Site occupancy with scramble competition. The within-season dynamics gives
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Denote S the density of sites and define ¢(T") := o3 6762%%%. When we consider scramble

competition, we get the Ricker model (3) with

a=5Sp(T),  b=p(T).

The equilibrium Z is defined by (4). Its existence and stability depend on the coefficient
a. In particular, we distinguish the following cases

no positive equilibrium < 0<a<1 <& Se(T) <1
Z monotonically stable & l1<a<e < 1<8Sp(T)<e
T oscillatory stable & e<a<er & e<Sp((T)<e?
T oscillatory unstable <  a>e? & Sp(T) > e?
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We observe that ¢(7") is increasing up to
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and then it decreases to zero. Assume all the parameters except 1" are fixed, so the shape
of ¢(T) is well determined. The threshold values 1, e, e? are in the vertical axis.
Therefore, increasing 1" but remaining below T makes it easier to destabilize the equi-
librium. Instead, when we consider T' > T and we increase T further and further, we
observe the following changes:

T =

T unstable — Z oscillatory stable — Z monotonically stable — x = 0 is stable (extinction).



Note that, for some parameter values, it might hold S¢(T") < €? for all T'. In this case the

positive equilibrium is always stable when it exists.

Exercise 14

Within-season dynamics. From the i-processes (to simplify the notation, I introduce

n =1v/2), we get the equations
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Note that the reproductive burst is translated into the initial condition for V.
We solve the first equation by separation of variables,
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To solve the left-hand side, we observe that
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We are now ready to solve (6):
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We now solve the second equation in (5), again by separation of variables,
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from which we get
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Between-season dynamics. Assume that a proportion o of juveniles survive to the
next season and become adults. The we get the discrete-time equation

1
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(this is obtained by calculating [ U, (t,zy,)dt = %log }u + nx, — nxne*”t‘ ).
We now study graphically the existence and stability of a positive equilibrium z. The
function f is plotted in the picture. A positive equilibrium Z exists if and only if f/(0) < 1.
We calculate
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Therefore,
3z > 0 oBe O 0 < 1.

If this is the case, by analysing the graph by the cobweb method, it is easy to convince
yourself that the positive equilibrium Z is unstable.
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