
MATHEMATICAL MODELLING

HOMEWORK SOLUTIONS

September 9, 2015

Exercise 1

(a) Dying Poisson process: the only i-state transaction is

Alive δ−→ Dead

Let P (t) be the probability that an individual is still alive at time t. Then

P (t+ ∆t) = prob that i was alive at time t and has survived

= P (t)(1− δ∆t+O(∆t2))

(it’s true: higher order terms come from Taylor expansion of the Poisson distribution) and
by rearranging and taking the limit ∆t→ 0, we get

P ′(t) = −δP (t).

This is a linear ODE and the solution is P (t) = e−δtP (0) = e−δt (note that P (0) = 1
because we assume that the individual is alive at time 0).

(b) Consider the random variable T describing the lifetime of individual i. We derive
the probability distribution

FT (t) = P (T ≤ t) = P (i has already dead at time t)
= 1− P (i is alive at time t)

= 1− e−δt.

The probability density is
fT (t) = F ′T (t) = δe−δt.

Verify that this is exactly the probability density of an exponentially distributed r.v. with
mean δ−1, or compute explicitly the mean value

E(T ) =

∫ ∞
0

tfT (t)dt =

∫ ∞
0

tδe−δtdt

=
[
−te−δt

]∞
0

+

∫ ∞
0

e−δtdt = 0 +
1

δ

[
−e−δt

]∞
0

=
1

δ

where the first step is obtained through integration by parts.
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(c) As explained in the lectures, through the law of large numbers (LLN) we can interpret
the individual probabilities as fractions of population having a certain property. Define for
each individual i the random variable

Ri(t) =

{
1 if i is alive at time t
0 otherwise

Then, E(Ri(t)) = 1P (t) + 0(1− P (t)) = P (t), and by the law of large numbers,

fraction of pop. in state i = lim
n→∞

1

n

n∑
i=1

Ri(t) = P (t).

Denote x the initial population density, and

N(t) = P (t)x = pop. density of alive individuals.

Then, by differentiating, we get the ODE at the population level

N ′(t) = P ′(t)x = −δP (t)x = −δN(t).

Exercise 2

(a) i-states

A individuals in first habitat

B individuals in second habitat

i-state transitions

A
α−→ B

B
β−→ A

differential equations

dA

dt
= −αA+ βB

dB

dt
= αA− βB

(b) i-states

E egg

J juvenile

i-state transitions

E
h−→ J

differential equations

dE

dt
= −hE

dJ

dt
= hE

(c) i-states

A individual

i-state transitions

A
β−→ 2 A

differential equations

dA

dt
= βA

(d) i-states

M male

F female

O non-reproducing offspring

i-state transitions

M + F
β−→ O + M + F

differential equations

dO

dt
= βMF
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(e) i-states

P predator

R prey

i-state transitions

P + R
α−→ P

differential equations

dR

dt
= −αPR

(f) i-states

I single individual

P pair of individuals

i-state transitions

I + I
α−→ P

P
β−→ 2 I

differential equations

dI

dt
= −2αI2 + 2βP

dP

dt
= +αI2 − βP

(g) i-states

I individual

i-state transitions

I + I
α−→ I

differential equations

dI

dt
= −αI2 +

1

2
αI2 =

1

2
αI2

Density-independent: (a), (b), (c); density-dependent: (d), (e), (f), (g). Check if
you can distinguish by yourself the cases for which the conservation law applies (and
corresponding conserved quantities).

Exercise 3

Density-independent transition. Consider first the density-independent transition

A
α−→ B

(e.g., natural death, maturation of an individual, hatching of an egg, recovery from a
disease,. . . ). Observe that, in the case the state B is “death”, we are exactly in the case
of Exercise 1.

The ODE describing the evolution of the population density is

dA

dt
= −αA

dB

dt
= +αA.

(observe that the total population size N = A+B does not change). Therefore,

A(t) = e−αtA(0).

The expected time till a transition is obtained as in Exercise 1(b), so it is α−1 (check
that you can prove it by yourself).

Density-dependent transition. Consider the density-dependent transition

A
αA−→ B

(e.g., awakening, chemical reaction, migration/death caused by absence of space,. . . )
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The ODE for the population density is

dA

dt
= −αA2

dB

dt
= +αA2.

This is a nonlinear ODE. We solve it by separation of variables: by rearranging and
integrating both sides we get ∫ A(t)

A(0)

1

A2
dA = −αt.

It is easy to see that
∫ A(t)
A(0) y

−2 dy = A(0)−1−A(t)−1 and therefore, by rearranging a little,
we get the explicit solution

A(t) =
A(0)

1 +A(0)αt

Analogously as in Exercise 1, we denote T the random variable describing the time at
which the transition happens. We compute the probability distribution

FT (t) = P (T ≤ t) = 1− P (i is still in state A at time t) = 1−A(t)

and the probability density function

fT (t) = F ′T (t) = −A′(t)

Therefore, the expected value of T is (using integration by parts)

E(T ) =

∫ ∞
0

tfT (t)dt

= −
∫ ∞
0

tA′(t)dt = − [tA(t)]∞0 +

∫ ∞
0

A(t) dt

= [log(1 +A(0)αt)]∞0 = +∞
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