MATHEMATICAL MODELLING EXERCISE 8 – 9

8.

Consider the site-competition model from the lectures:

 $\frac{\mathrm{d}}{\mathrm{d}t}X = \lambda(X_{\mathrm{max}} - X)Y - \delta X \qquad \text{(site owners)}$ $\frac{\mathrm{d}}{\mathrm{d}t}Y = -\lambda(X_{\mathrm{max}} - X)Y + \beta X - \mu Y \quad \text{(searchers)}$

(a) Suppose that Y is small relative to X and that λ is large compared to the other parameters. Scale Y and λ accordingly using the small dimensionless scaling parameter $\varepsilon > 0$. Show that you get a slow-fast system, and analyse the slow and the fast dynamics in the limit of $\varepsilon \to 0$. Compare the equation for the slow dynamics with the logistic equation;

(b) Suppose that Y is large relative to X and that δ and β are large compared to the other parameters. Scale Y and δ accordingly using the small dimensionless scaling parameter $\varepsilon > 0$. Show that you get a slow-fast system, and analyse the slow and the fast dynamics in the limit of $\varepsilon \to 0$. Compare the equation for the slow dynamics with the logistic equation;

9.

Consider the predator-prey model from the lectures:

$\frac{\mathrm{d}}{\mathrm{d}t}X$	=	$\alpha f(X) - \beta X Y_{\rm S}$	(prey)
$\frac{\mathrm{d}}{\mathrm{d}t}Y_{\mathrm{S}}$	=	$-\beta XY_{\rm S} + \frac{1+p}{T}Y_{\rm H} - \delta Y_{\rm S}$	(searching predators)
$\frac{\mathrm{d}}{\mathrm{d}t}Y_{\mathrm{H}}$	=	$+\beta XY_{ m S}-rac{1}{T}Y_{ m H}-\delta Y_{ m H}$	(handling predators)

(a) By scaling only parameters, transform this system in a fast-slow system such that $Y := Y_{\rm S} + Y_{\rm H}$ (total predator density) becomes a slow variable and X and $Y_{\rm H}$ become fast variables;

(b) Analyse the 2-dimensional fast dynamics using the phase-plane method and local stability analysis;

(c) Analyse the 1-dimensional slow dynamics on the slow manifold.