University of Helsinki / Department of Mathematics and Statistics SCIENTIFIC COMPUTING

Exercise 02, 21.9.2015

1. A data set $\left(x_{j}, y_{j}\right), j=1, \ldots, m$, and a fixed point (s, t) is given. Consider the lines $y=t+k(x-s)$ through this point and for varying parameter k form the sum

$$
A(k)=\sum_{j=1}^{m}\left(y_{j}-t-k\left(x_{j}-s\right)\right)^{2} .
$$

Write the formula for the derivative $A^{\prime}(k)$, and solve the linear equation $A^{\prime}(k)=0$ for k. With this particular value of k we get the least square (LSQ) line fitted to our data set through the point (s, t). Generate some synthetic data [e.g. $x_{j}=0.5 * j, y_{j}=0.3 * x_{j}+0.1 * \sin \left(30 * x_{j}\right), j=1, \ldots, 20$,] plot the data and the LSQ-line through the point $(0,0)$ and check visually whether the line fits nicely to the data set.
2. P. J. Myrberg (1892-1976) has published the following algorithm for the computation of the square root in his paper in Ann. Acad. Sci. Fenn. Ser. A I 253 (1958), 1-19. Fix $z \in \mathbb{C} \backslash\{1\}$ and let $q_{0}=(z+1) /(z-1), q_{k+1}=$ $2 q_{k}^{2}-1, k=0,1, \ldots$. Then $\sqrt{z}=\Pi_{k=0}^{\infty}\left(1+1 / q_{k}\right)$. Carry out MATLAB tests to check this claim in the following cases
(a) z is real and >1,
(b) z is real and in $[0,1]$.
(c) z is complex [Hint: Generate a random complex number w and set $z=w * w$ and see whether the algorithm gives you w.]
3. The use of the Trapezoid formula for numerical integration of a tabulated function $f\left(x_{i}\right)=y_{i}$ is based on the formula

$$
s=\sum_{i=1}^{n}\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right) / 2
$$

where the tabulated values are $\left(x_{i}, y_{i}\right), i=1, \ldots, n+1$, and $x_{i}<x_{i+1}$.

[^0]
(a) Show that if $f(x)=\sum_{j=1}^{m} c_{j} \sin \left(d_{j} * x\right)$, then by high school calculus
$$
\int_{a}^{b} f(x) d x=\sum_{j=1}^{m}\left(c_{j} / d_{j}\right)\left(\cos \left(d_{j} * a\right)-\cos \left(d_{j} * b\right)\right)
$$
(b) Generate coefficient vectors c and d [e.g. $c=3 * r a n d(1,5)$; $\mathrm{d}=1+10 * \mathrm{rand}(1,5)]$ and use the exact formula in part(a) to compute the integral $\int_{0}^{1} f(x) d x$ and also compute the value by the trapezoid formula and print the error when the points $x_{j}=(1 / n) * j, j=0,1, \ldots, n$, are used in the trapezoid formula with $n=20: 10: 200$.
4. For random points a, b, c, d in the plane, find the point of intersection of the lines L_{1} through a, b and L_{2} through c, d. Plot the picture of the lines and the point of intersection.
5. Fix $a>0$. It is well-known that if $0<x_{0}<2 / a$ the recursive sequence defined by $x_{k+1}=x_{k}\left(2-a x_{k}\right)$ converges to $1 / a$.
(a) Write a MATLAB function to compute the reciprocal with this method.
(b) Apply the method to several test cases (say to $0.1 * k, k=1: 1000$,) and report the error.
6. Numerical analysis textbooks often point out that the quadratic formula $x_{1,2}=\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$ for the solution of the equation $a x^{2}+b x+c=0$ may lead to distorted results when $|4 a c|$ is very small. Plan a MATLAB experiment to justify this remark and report the errors in the test cases you have used. (Hint. Choose $a=b^{2} /(4 c) \cdot 10^{-m}, m=3, \ldots, 15$. Compare your result either to what you get from the method explained during the lectures or from MATLAB roots ([$a \mathrm{~b} \quad \mathrm{c}]$).)

[^0]: FILE: $\quad \sim / \mathrm{mme} /$ demo15/d02/d02.tex — 29. elokuuta 2015 (klo 11.03)

