Logic Toolbox Department of Mathematics and Statistics, University of Helsinki Fall 2015 Exercise 7

1. If $f, g \in {}^{\omega}\omega$, say $f <^{*} g$ iff there is some $n < \omega$ such that for all $m > n, m < \omega$, f(m) < g(m). Let $\mathcal{F} \subset {}^{\omega}\omega$ with $|\mathcal{F}| = \kappa$. Assuming MA(κ), show that there is $g \in {}^{\omega}\omega$ such that for all $f \in \mathcal{F}$, $f <^{*} g$.

Hint: Let P be the set of pairs (p, F) such that p is a partial function from ω to ω and F is a finite subset of $\mathcal{F}, (p, F) \leq (q, G)$ iff $q \subset p, G \subset F$ and

 $\forall f \in G \forall n \in (\operatorname{dom}(p) \setminus \operatorname{dom}(q)) \, p(n) > f(n).$

2. Assume MA(κ). Let \mathcal{A} be a family of Lebesgue measurable subsets of \mathbb{R} with $|\mathcal{A}| = \kappa$. Show that $\bigcup \mathcal{A}$ is Lebesgue measurable and $\mu(\bigcup \mathcal{A}) = \mu(\bigcup \mathcal{B})$ for some countable $\mathcal{B} \subset \mathcal{A}$.

3. Assume MA(κ). Let X be a compact c.c.c. Hausdorff space and U_{α} dense open subsets of X for $\alpha < \kappa$. Then $\bigcap_{\alpha < \kappa} U_{\alpha} \neq \emptyset$.

Hints: Use the partial order $P = \{p \subset X : p \text{ is open and } p \neq \emptyset\}$ with $p \leq q$ iff $p \subseteq q$. Compactness is equivalent to the claim that any collection of closed sets with the finite intersection property has nonempty intersection. Use dense sets $D_{\alpha} = \{p \in P : \overline{p} \subset U_{\alpha}\}$ and the fact that X is regular (see, e.g., Wikipedia).

4. Assume MA(ω_1). Let X be a c.c.c. topological space and $\{U_\alpha : \alpha < \omega_1\}$ a family of non-empty open subsets of X. Then there is an uncountable $A \subset \omega_1$, such that $\{U_\alpha : \alpha \in A\}$ has the finite intersection property.

Hints: Let $V_{\alpha} = \bigcup_{\gamma > \alpha} U_{\gamma}$. First find α such that for all $\beta > \alpha$, $\overline{V_{\beta}} = \overline{V_{\alpha}}$. Then for such an α use the partial order $P = \{p \subset V_{\alpha} : p \text{ is open and } p \neq \emptyset\}$ and for a suitable G let $A = \{\gamma < \omega_1 : \exists p \in G \ p \subseteq U_{\gamma}\}.$

5. A partial order P has ω_1 as a *precaliber* iff whenever $p_{\alpha} \in P$ for $\alpha < \omega_1$, there is an uncountable $X \subseteq \omega_1$ such that $\{p_{\alpha} : \alpha \in X\}$ has the finite intersection property (for all finite $s \subset X \exists q \forall \alpha \in s q \leq p_{\alpha}$). Show that $MA(\omega_1)$ implies that every c.c.c. P has ω_1 as a precaliber.

6. Assume MA(ω_1). Let A_α be a Lebesgue measurable subset of \mathbb{R} for $\alpha < \omega_1$, with $\mu(A_\alpha) > 0$. Show that for some uncountable $X \subset \omega_1$, $\mu(\bigcap_{\alpha \in X} A_\alpha) > 0$.

Hint: If $\forall \alpha \, \mu(A_{\alpha}) > \varepsilon$, let $P = \{s \subset \omega_1 : |s| < \omega \text{ and } \mu\left(\bigcap_{\alpha \in s} A_{\alpha}\right) > \varepsilon\}$. Show that P has c.c.c. and apply the previous exercise to $\{\{\alpha\} : \alpha < \omega_1\}$.