## Logic Toolbox <br> Department of Mathematics and Statistics, University of Helsinki Fall 2015 <br> Exercise 7

1. If $f, g \in{ }^{\omega} \omega$, say $f<^{*} g$ iff there is some $n<\omega$ such that for all $m>n, m<\omega$, $f(m)<g(m)$. Let $\mathcal{F} \subset{ }^{\omega} \omega$ with $|\mathcal{F}|=\kappa$. Assuming $\operatorname{MA}(\kappa)$, show that there is $g \in{ }^{\omega} \omega$ such that for all $f \in \mathcal{F}, f<^{*} g$.

Hint: Let $P$ be the set of pairs $(p, F)$ such that $p$ is a partial function from $\omega$ to $\omega$ and $F$ is a finite subset of $\mathcal{F},(p, F) \leq(q, G)$ iff $q \subset p, G \subset F$ and

$$
\forall f \in G \forall n \in(\operatorname{dom}(p) \backslash \operatorname{dom}(q)) p(n)>f(n) .
$$

2. Assume $\operatorname{MA}(\kappa)$. Let $\mathcal{A}$ be a family of Lebesgue measurable subsets of $\mathbb{R}$ with $|\mathcal{A}|=\kappa$. Show that $\bigcup \mathcal{A}$ is Lebesgue measurable and $\mu(\bigcup \mathcal{A})=\mu(\bigcup \mathcal{B})$ for some countable $\mathcal{B} \subset \mathcal{A}$.
3. Assume $\operatorname{MA}(\kappa)$. Let $X$ be a compact c.c.c. Hausdorff space and $U_{\alpha}$ dense open subsets of $X$ for $\alpha<\kappa$. Then $\bigcap_{\alpha<\kappa} U_{\alpha} \neq \emptyset$.

Hints: Use the partial order $P=\{p \subset X: p$ is open and $p \neq \emptyset\}$ with $p \leq q$ iff $p \subseteq q$. Compactness is equivalent to the claim that any collection of closed sets with the finite intersection property has nonempty intersection. Use dense sets $D_{\alpha}=\left\{p \in P: \bar{p} \subset U_{\alpha}\right\}$ and the fact that $X$ is regular (see, e.g., Wikipedia).
4. Assume $\operatorname{MA}\left(\omega_{1}\right)$. Let $X$ be a c.c.c. topological space and $\left\{U_{\alpha}: \alpha<\omega_{1}\right\}$ a family of non-empty open subsets of $X$. Then there is an uncountable $A \subset \omega_{1}$, such that $\left\{U_{\alpha}: \alpha \in A\right\}$ has the finite intersection property.

Hints: Let $V_{\alpha}=\bigcup_{\gamma>\alpha} U_{\gamma}$. First find $\alpha$ such that for all $\beta>\alpha, \overline{V_{\beta}}=\overline{V_{\alpha}}$. Then for such an $\alpha$ use the partial order $P=\left\{p \subset V_{\alpha}: p\right.$ is open and $\left.p \neq \emptyset\right\}$ and for a suitable $G$ let $A=\left\{\gamma<\omega_{1}: \exists p \in G p \subseteq U_{\gamma}\right\}$.
5. A partial order $P$ has $\omega_{1}$ as a precaliber iff whenever $p_{\alpha} \in P$ for $\alpha<\omega_{1}$, there is an uncountable $X \subseteq \omega_{1}$ such that $\left\{p_{\alpha}: \alpha \in X\right\}$ has the finite intersection property (for all finite $s \subset X \exists q \forall \alpha \in s q \leq p_{\alpha}$ ). Show that MA $\left(\omega_{1}\right)$ implies that every c.c.c. $P$ has $\omega_{1}$ as a precaliber.
6. Assume $\operatorname{MA}\left(\omega_{1}\right)$. Let $A_{\alpha}$ be a Lebesgue measurable subset of $\mathbb{R}$ for $\alpha<\omega_{1}$, with $\mu\left(A_{\alpha}\right)>0$. Show that for some uncountable $X \subset \omega_{1}, \mu\left(\bigcap_{\alpha \in X} A_{\alpha}\right)>0$.

Hint: If $\forall \alpha \mu\left(A_{\alpha}\right)>\varepsilon$, let $P=\left\{s \subset \omega_{1}:|s|<\omega\right.$ and $\left.\mu\left(\bigcap_{\alpha \in s} A_{\alpha}\right)>\varepsilon\right\}$. Show that $P$ has c.c.c. and apply the previous exercise to $\left\{\{\alpha\}: \alpha<\omega_{1}\right\}$.

