Logic Toolbox
 Department of Mathematics and Statistics, University of Helsinki Fall 2015
 Exercise 4

1. Prove Zorn's lemma using transfinite induction.
2. Prove that $\mathbb{R}^{3} \backslash \mathbb{Q}^{3}$ is a union of disjoint lines.
3. For a subset A of the plane \mathbb{R}^{2}, the horizontal section of A generated by $y \in \mathbb{R}$ (i.e., its projection onto the first coordinate) is $A^{y}=\{x \in \mathbb{R}:(x, y) \in A\}$. The vertical section of A generatec by $x \in \mathbb{R}$ is $A_{x}=\{y \in \mathbb{R}:(x, y) \in A\}$.

Prove that there exists a subset A of the plane with every horizontal section A^{y} being dense in \mathbb{R} and with every vertical section A_{x} having precisely one element. Hint: Enumerate the set $\{(a, b) \times\{y\}: a, b, y \in \mathbb{R}, a<b\}$.
4. Show that \mathbb{R}^{3} is the union of disjoint circles. Hint: generalize the idea from the line example from the lectures.

