Logic Toolbox

Department of Mathematics and Statistics, University of Helsinki Fall 2015
Exercise 1 (warm-up exercises)

1. Let $(A,<)$ be a linearly ordered set. Show that A is well-ordered if and only if there is no infinite descending sequence in A.
2. The Axiom of Foundation states that every nonempty set A has an element x such that $x \cap A=\emptyset$. Show that the Axiom of Foundation implies that no set is a member of itself.
3. Show that if α and β are ordinals then

$$
\alpha \subseteq \beta \text { if and only if }(\alpha \in \beta \text { or } \alpha=\beta) .
$$

4. Prove that $\omega=\sup \{0,1,2, \ldots\}=\bigcup\{0,1,2, \ldots\}=\{0,1,2, \ldots\}$.

More generally, if α is a limit ordinal, show that $\alpha=\sup \{\beta: \beta<\alpha\}=\bigcup\{\beta: \beta<$ $\alpha\}=\{\beta: \beta<\alpha\}$. Which equalities hold also for successors?
5. Construct a well-ordering on ω that is different from the usual ordering \in on ω.
6. Show that if R and R^{-1} are both well orderings of the same set X, then X is finite.

