
2 Ultraproducts

The next tool we look at is ultraproducts. These are a tool for building new
structures from old ones allowing to approximate the desired properties of
the end structure in the structures along the way. We start by looking at the
general notion of a structure.

2.1 Structures

From the viewpoint of logic almost any construct you come across in mathe-
matics is a structure. Examples include graphs, groups, fields, vector spaces,
Banach spaces, operator algebras, etc. A structure is just a set equipped
with various constants, relations and functions. These are determined by
the vocabulary, that determines which aspects of a familiar structure we are
studying: e.g., when looking at the reals R, do we mean the dense linear
order, the field, or something else?

Definition 2.1. A vocabulary is a set of constant symbols c, relation symbols
R and function symbols f . We always assume that the relation and function
symbols have associated to them a unique natural number nR (or nf ), the
arity of the relation (function).

Example 2.2. • The smallest vocabulary is the empty vocabulary, that
is used when studying pure sets.

• The vocabulary of rings is {+,−, ·, 0, 1}, where + and · are binary
functions, − is a unary function and 0, 1 are constants.

• The vocabulary of graphs is {E}, where E is the binary edge relation.

• The vocabulary of linear orders is {<}.

Definition 2.3. Given a vocabulary L, an L-structure M consists of

• the domain ofM, dom(M) =M , which is a nonempty set,

• for each constant symbol c ∈ L, an element cM ∈M ,

• for each relation symbol R ∈ L, a nR-ary relation R
M ⊆MnR ,

• for each function symbol f ∈ L, a nf -ary function f
M :Mnf →M .

Often one uses the same symbol both for the symbols of the vocabulary
and their interpretation in a given model.
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Example 2.4. A graph G = (V,E) consists of a nonempty set of vertices
V and the (irreflexive and symmetric) binary edge relation E ⊂ V 2 (see
Figure 2).

Figure 2: A graph.

Definition 2.5. SupposeM and N are L-structures with universes M and
N respectively. An L-embedding F : M → N is an injection F : M → N
that preserves the interpretation of all of the symbols of L, i.e.,

• F (cM) = cN for all constant symbols c ∈ L,

• (a0, . . . , an−1) ∈ RM if and only if (F (a0), . . . , F (an−1)) ∈ RN for all
relation symbols R ∈ L and a0, . . . , an−1 ∈M ,

• F (fM(a0, . . . , an−1)) = fN (F (a0), . . . , F (an−1)) for all function sym-
bols f ∈ L and a0, . . . , an−1 ∈M .

A bijective L-embedding is an L-isomorphism.
If M ⊆ N and the inclusion map is an L-embedding, we say thatM is a

substructure of N and that N is an extension ofM.

Note that substructures need to have interpretations for all constants
and they need to be closed under all functions. However, for a purely rela-
tional vocabulary, any subset of a structure is a substructure (with relations
restricted to the appropriate powers of the new domain).

2.2 Filters

To define ultraproducts we need the notion of ultrafilter. These are used also
in topology, e.g., to define a more general notion of convergence than the
sequential one.

Definition 2.6. Let I be a set. A filter D on I is a nonempty collection of
subsets of I satisfying

• ∅ /∈ D,

• if X, Y ∈ D, then X ∩ Y ∈ D,
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• if X ∈ D and X ⊆ Y ⊆ I, then Y ∈ D.

A filter D on I is an ultrafilter if in addition

• for all X ⊆ I, either X ∈ D or I\X ∈ D.

A filter D is called principal, if it is of the form

D = {X ⊆ I : i ∈ X}

for some i ∈ I.

Principal filters are ultrafilters, but we are usually interested in the non-

principal ones. A particularly useful filter is the Frechet filter :

Example 2.7. The Frechet filter or cofinite filter on N is defined by:

F = {X ⊆ N : N\X is finite}.

It is clearly nonempty (N ∈ F ), ∅ /∈ F and upwards closed. If X, Y ∈ F ,
then the complement of X ∩ Y is the union of the complements of X and Y ,
so F is a filter.

The Frechet filter is not an ultrafilter, but that can be mended (assuming
AC). For this we need the notion of a generated filter.

Definition 2.8. A collection F of sets is said to have the finite intersection

property, if any finite collection of sets from F has finite intersection.
A collection F with the finite intersection property generates the filter

〈F 〉 = {X ⊆
⋃

F :
⋂

j∈J

Xj ⊆ X,Xj ∈ F, F finite}.

Note that the finite intersection property is exactly what is needed of F
for 〈F 〉 to be a filter. Now we can expand any filter to an ultrafilter (to build
an ultrafilter ‘out of nothing’, let D = I in the theorem).

Theorem 2.9. Any filter can be extended to an ultrafilter.

Proof. We prove this by transfinite induction. So let D be a given filter on
I. Enumerate the powerset of I,

P(I) = {Xα : α < 2|I|}.

Now inductively define filters Dα as follows: D0 = D. When Dα has been
defined, look at Xα. If X ∩Xα = ∅ for some X ∈ Dα, let Dα+1 be the filter
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generated by Dα ∪ {I\Xα}, either let Dα+1 be generated by Dα ∪ {Xα}. We
need to check that Dα+1 is a filter. If X ∩ Xα 6= ∅ for any X ∈ Dα, then
clearly Dα∪{Xα} has the finite intersection property. If X∩Xα = ∅ for some
X, we need to show that Dα ∪ {I\Xα} has the finite intersection property.
If not, there are X1, . . . , Xn ∈ Dα such that X1 ∩ · · · ∩Xn ∩ (I\Xα) = ∅, i.e.,
X1 ∩ · · · ∩Xn ⊆ Xα, so X1 ∩ · · · ∩Xn ∩X ⊆ Xα ∩X = ∅, contradicting the
fact that Dα was a filter. So Dα ∪ {I\Xα} must have the finite intersection
property, and Dα+1 can be defined.

For limit δ, let Dδ =
⋃

α<δDα. It is easy to see that Dδ is a filter.
In the end, D2|I| will be an ultrafilter extending D.

2.3 Ultraproducts

Definition 2.10. Let I be a set and D a filter over I. For each i ∈ I, let
Xi be a set. Then we can define an equivalence relation ∼D on the cartesian
product

∏
i∈I Xi by

(ai)i∈I ∼D (bi)i∈I iff {i ∈ I : ai = bi} ∈ D.

This is an equivalence relation: reflexivity and symmetry are trivial, and
transitivity follows from the assumption that D is a filter and noticing that

{i ∈ I : ai = ci} ⊇ {i ∈ I : ai = bi} ∩ {i ∈ I : bi = ci}.

The set
∏

i∈I Xi/D denotes the set of equivalence classes of ∼D. It is called
the reduced product of Xi modulo D.

If D is an ultrafilter, the reduced product is called an ultraproduct. If all
the sets Xi are the same set X, the ultraproduct is called the ultrapower of

X modulo D.

This construction is the basis for defining ultraproducts of models.

Definition 2.11. Let L be a vocabulary. Let I be a nonempty set, D
an ultrafilter over I and for each i ∈ I, let Mi be an L-structure. The
ultraproduct

∏
i∈IMi/D is the L-structureM defined by the following:

• The domain of
∏

i∈IMi/D is
∏

i∈I Mi/D (where Mi is the domain of
Mi.

• If c ∈ L is a constant symbol and ci denotes the interpretation of c in
Mi, c

M = (ci)i∈I/D.
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• If R ∈ L is an n–ary relation symbol, then RM is defined by

(a1D, . . . a
n
D) ∈ R

M if and only if {i ∈ I : (a1(i), . . . , an(i)) ∈ RMi} ∈ D.

for any elements akD = (ak(i))i∈I/D ∈
∏

i∈I Mi/D.

• If F ∈ L is an n–ary function symbol, then

FM(a1D, . . . a
n
D) = (FMi(a1(i), . . . , an(i)))i∈I/D.

A crucial part of the definition is the following lemma showing that the
structure on M is well-defined. Note that the interpretation of constant
symbols is fine, since it does not depend on any chosen representatives but
only gives an element of

∏
i∈I Mi/D.

Lemma 2.12. Let I, D, L and Mi be as in Definition 2.11. Suppose that

a1d = b1D, . . . , a
n
D = bnD. Then

{i ∈ I : (a1(i), . . . , an(i)) ∈ RMi} ∈ D if and only if

{i ∈ I : (b1(i), . . . , bn(i)) ∈ RMi} ∈ D

and

(FMi(a1(i), . . . , an(i)))i∈I ∼D (FMi(b1(i), . . . , bn(i)))i∈I .

Proof. Denote Xk = {i ∈ I : ak(i) = bk(i)}. By assumption Xk ∈ D for all
k ∈ {1, . . . , n}.

For the first claim assume X := {i ∈ I : (a1(i), . . . , an(i)) ∈ RMi} ∈ D.
But now

X ∩X1 ∩ · · · ∩Xn ⊆ {i ∈ I : (b1(i), . . . , bn(i)) ∈ RMi}

so as D is a filter, {i ∈ I : (b1(i), . . . , bn(i)) ∈ RMi ∈ D. The other direction
is symmetrical.

For the second claim, note that FMi(b1(i), . . . , bn(i)) = FMi(a1(i), . . . , an(i)),
whenever bk(i) = ak(i) for each k ∈ {1, . . . , n} (as FMi is a function. Thus

X1 ∩ . . . Xn ⊆ {i ∈ I : FMi(b1(i), . . . , bn(i)) = FMi(a1(i), . . . , an(i))}

so {i ∈ I : FMi(b1(i), . . . , bn(i)) = FMi(a1(i), . . . , an(i))} ∈ D which is the
claim.

The above lemma makes sure that Definition 2.11 gives a well-defined
L-structure. We will look closer at this structure and its properties once we
have a logic to express these properties.
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2.4 Predicate logic

Predicate logic (or first order logic) is a formal language used as a tool in
studying structures. It is built from basic statements, atomic formulas, using
connectives (‘not’ ¬, ‘and’ ∧, ‘or’ ∨) and quantifiers (‘there exists’ ∃, ‘for all’
∀).

The objects formulas ‘talk about’ are called terms. They are built from
variables and named elements of the structure.

Definition 2.13. Let L be a vocabulary. The set of L–terms is defied by:

• If vj is a variable, then vj is an L-term.

• If c ∈ L is a constant symbol, then c is an L-term.

• If t1, . . . , tn are L-terms and F ∈ L is an n-ary function symbol, then
F (t1, . . . , tn) is an L–term.

The most simple formulas one can form are the atomic formulas:

Definition 2.14. Let L be a vocabulary. The set of atomic L-formulas is
defined by:

• If t1, t2 are L–terms, then t1 = t2 is an atomic L-formula.

• If R ∈ L is an n-ary relation symbol, and t1, . . . , tn are L-terms, then
R(t1, . . . , tn) is an atomic L–formula.

Combining atomic formulas by connectives and quantifiers gives the full
set of L-formulas. Note that we do not include all connectives, as the omitted
ones can be expressed using ¬ and ∧.

Definition 2.15. Let L be a vocabulary. The set of L-formulas is defined
by:

• Atomic L-formulas are L-formulas.

• If ϕ, ψ are L-formulas, then so are ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ).

• If ϕ is an L-formula and vj is a variable, then ∃vjϕ and ∀vjϕ are
L–formulas.

Before we can define how to interpret the meaning of formulas in struc-
tures, we need to note the difference between free and bound variables.

Definition 2.16. The free variables of a formula ϕ, Free(ϕ) can be defied
inductively as follows:
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• The free variables of an atomic formula are all the variables occurring
in the formula.

• Free(¬ϕ) = Free(ϕ) and Free((ϕ ∧ ψ) = Free(ϕ ∨ ψ) = Free(ϕ) ∪
Free(ψ).

• Free(∃vjϕ) = Free(∀vjϕ) = Free(ϕ)\{vj}.

The variables occurring in a formula that are not free are bound. A formula
with no free variables is a sentence.

The role of sentences and formulas with free variables differ a bit: formulas
express properties of tuples of elements from a model while sentences express
properties of the models as a whole. To see exactly what a formula expresses
we need a definition of when it is satisfied and when not.

In the following writing a formula ϕ in the form ϕ(v1, . . . , vn) means that
the free variables occurring in ϕ are among the variables v1, . . . , vn. We
then define what it means for a formula ϕ(v1, . . . , vn) to hold of a tuple
(a1, . . . , an) ∈M

n in a modelM. For that we need to know how to interpret
terms:

Definition 2.17. Let L be a vocabulary,M an L-structure, and t an L–term
built using variables from v̄ = (v1, . . . , vn). The value of t at ā, t[ā], where
ā = (a1, . . . , an) ∈M

n is defined inductively by:

1. If t = vi, then t[ā] = ai.

2. If t = c a constant symbol in L, then t[ā] = cM.

3. If t = F (t1, . . . , tn), where F ∈ L is an n–ary function symbol and
t1, . . . , tn are L-terms, then

t[ā] = FM(t1[ā], . . . , tn[ā]).

We can then define satisfaction of a formula.

Definition 2.18. Let L be a vocabulary, M an L-structure, ϕ(v1, . . . , vn)
an L–formula and ā = (a1, . . . , an) ∈M

n. The concept ofM satisfying ϕ[ā]
(or ā satisfying ϕ in M), denotedM |= ϕ[ā], is defined inductively by:

1. If ϕ is t1 = t2, thenM |= ϕ[ā] iff t1[ā] = t2[ā].

2. If ϕ is R(t1, . . . , tn), thenM |= ϕ[ā] iff (t1[ā], . . . , tn[ā]) ∈ R
M.

3. If ϕ is ¬ψ thenM |= ϕ[ā] iffM 6|= ψ[ā].
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4. If ϕ is (ψ ∧ θ) thenM |= ϕ[ā] iff bothM |= ψ[ā] andM |= θ[ā] hold.

5. If ϕ is (ψ∨θ) thenM |= ϕ[ā] iff at least one ofM |= ψ[ā] andM |= θ[ā]
holds.

6. If ϕ(v1, . . . , vn) is ∃vjψ(v1, . . . , vn, vj) thenM |= ϕ[a1, . . . , an] iff there
is some b ∈M such thatM |= ψ[a1, . . . , an, b].

7. If ϕ(v1, . . . , vn) is ∀vjψ(v1, . . . , vn, vj) then M |= ϕ[a1, . . . , an] iff for
any b ∈M ,M |= ψ[a1, . . . , an, b] holds.

2.5 Łos’s theorem

The following theorem by Łos is central in using ultraproducts, and it is also
known under the name The fundamental theorem of ultraproducts.

Theorem 2.19 (Łos’s theorem). Let I be an infinite set, D an ultrafilter

over I, L a vocabulary, and for each i ∈ I, let Mi an L-structure. Denote

the ultraproduct M :=
∏

i∈IMi/D.

1. For any L-term t(v1, . . . , vn) and elements a1D, . . . , a
n
D ∈M ,

t[a1D, . . . , a
n
D] = (tMi [a1(i), . . . , an(i)])i∈I/D,

where tMi refers to the value of t being calculated in Mi.

2. For any L-formula ϕ(v1, . . . , vn) and any a1D, . . . , a
n
D ∈M,

M |= ϕ[a1D, . . . , a
n
D] if and only if {i ∈ I :Mi |= ϕ[a1(i), . . . , an(i)]} ∈ D.

Proof. 1. The claim is proved by induction on the structure of terms. If
t is a constant or a variable, this holds by definition. If t is of the
form F (t1, . . . , tm) and the claim holds for the terms t1, . . . , tm, then ,
denoting āD = (a1D, . . . , a

n
D) and ā(i) = (a1(i), . . . , an(i)),

tM[āD] = FM(t1[āD], . . . , tm[āD])

= FM((tMi

1 [ā(i)])i∈I/D, . . . , (t
Mi
m [ā(i)])i∈I/D)

= (FMi(tMi

1 [ā(i)], tMi
m [ā(i)]))i∈I/D

= (tMi [ā(i)])i∈I/D,

proving the claim.

2. The claim is proved by induction on the structure of formulas.
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(a) If ϕ is of the form t1 = t2, then by the above

t1[a
1

D, . . . , a
n
D] = t2[a

1

D, . . . , a
n
D] if and only if

(tMi

1 [a1(i), . . . , an(i)])i∈I ∼D (tMi

2 [a1(i), . . . , an(i)])i∈I ,

i.e., if {i ∈ I :Mi |= (t1 = t2)[a
1(i), . . . , an(i)]} ∈ D.

(b) The case where ϕ(v1, . . . , vn) is of the form R(t1, . . . , tm) is left as
an exercise.

(c) The cases where ϕ is of the form ¬ψ, (ψ ∧ θ) or (ψ ∨ θ) are left as
an exercise.

(d) Let ϕ(v1, . . . , vn) = ∃vjψ(v1, . . . , vn, vj) and assume the claim
holds for ψ. Now if

M |= ϕ[a1D, . . . , a
n
D],

then there is some ajD ∈M such thatM |= ψ[a1D, . . . , a
n
D, a

j
D]. By

induction hypothesis

X := {i ∈ I :Mi |= ψ[a1(i), . . . , an(i), aj(i)]} ∈ D

and X ⊆ {i ∈ I : Mi |= ∃vjψ[a
1(i), . . . , an(i)]} ∈ D. For the

other direction, if

X ′ := {i ∈ I :Mi |= ∃vjψ[a
1(i), . . . , an(i)]} ∈ D,

then for each i ∈ X ′ let aj(i) be s.t. Mi |= ψ[a1(i), . . . , an(i), aj(i)].
For i ∈ I\X ′, let aj(i) be arbitrary. Let ajD = (aj(i))i∈I/D.
Then {i ∈ I : Mi |= ψ[a1(i), . . . , an(i), aj(i)]} ⊇ X ′ so the set
is in D. By induction hypothesis M |= ψ[a1D, . . . , a

n
D, a

j
D], so

M |= ∃vjψ[a
1
D, . . . , a

n
D].

(e) The case where ϕ(v1, . . . , vn) = ∀vjψ(v1, . . . , vn, vj) is left as an
exercise.

2.6 Applications

One of the most important consequences of Łos’s theorem is the compactness
theorem of first order logic (this can also be proved by other methods, as is
done, e.g., on the course ‘Matemaattinen logiikka’).
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Definition 2.20. Let L be a vocabulary. A set T of L-sentences is satisfiable

if there exist an L-structureM such thatM |= ϕ for all ϕ ∈ T . This is often
writtenM |= T .

Theorem 2.21 (Compactness theorem). Let T be a set of sentences of first

order logic. Then T is satisfiable if and only if every finite subset of T is.

Proof. The direction from left to right is trivial. So we prove the direction
from right to left. Assume every finite subset of T is satisfiable. Let I be
the set of finite subsets of T . By assumption, for each i ∈ I we can find a
modelMi such thatMi |= i. Let Xi = {j ∈ I : i ⊆ j}. Then the collection
{Xi : i ∈ I} has the finite intersection property and thus generates a filter,
which can be extended to an ultrafilter D (by Theorem 2.9). Now by Łos’s
theorem

∏
i∈IMi/D |= T .

Ultraproducts can also be used to transfer properties, e.g., between fields
of positive and of zero characteristic. Recall that a field is a structure in the
vocabulary {+,−, 0, 1}, where + and · are binary function symbols and 0
and 1 are constant symbols. The axioms state (M,+) is an Abelian group
with neutral element 0

∀x∀y∀z x+ (y + z) = (x+ y) + z, ∀x(x+ 0 = x ∧ 0 + x = x),

∀x∃y(x+ y = 0 ∧ y + x = 0), ∀x∀y x+ y = y + x,

that (M\0, ·) is an Abelian group with neutral element 1

∀x∀y∀z x · (y · z) = (x · y) · z, ∀x(x · 1 = x ∧ 1 · x = x),

∀x∃y(x = 0 ∨ (x · y = 1 ∧ y · x = 1)), ∀x∀y x · y = y · x,

as well as distributivity

∀x∀y∀z x · (y + z) = (x · y) + (x · z)

and non-triviality
¬0 = 1.

So we see that the property of being a field can be expressed with first order
logic (above we have used ordinary shorthand such as x, y, z for v0, v1, v2 and
x+ y for +(x, y)). We could also have included functions for the inverses in
the vocabulary (and then defined, e.g., 0−1 = 0 just in order to have a total
function).

Now recall that if there is n ∈ N such that 1 + 1 + · · · + 1 (n repeated
terms) equals 0, then the smallest such n is the characteristic of the field.
The smallest such number must be a prime number. If no such number exists
the characteristic of the field is said to be zero.
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Theorem 2.22. Let P be an infinite set of primes and for each p ∈ P let Fp

be a field of characteristic p. If D is a non-principal ultrafilter over P , then∏
p∈P Fp/D is a field of characteristic zero.

Proof. Since the axioms expressed above capture the notion of a field and
are true in all Fp, the ultraproduct

∏
p∈P Fp/D is a field. Now let Σ = {ϕn :

n ≥ 1} where ϕn states that n · 1 6= 0,i.e.

ϕn = ¬1 + 1 + · · ·+ 1 = 0 (n repetitions of 1).

Now for each n ≥ 1, the set {p ∈ P : Fp |= ϕn} is cofinite (Fp |= ϕ iff p ∤ n).
By Exercise 5.6 a non-principal ultrafilter always contains the cofinite filter,
so {p ∈ P : Fp |= ϕn} ∈ D. Thus

∏
p∈P Fp/D |= Σ and thus cannot have

positive characteristic. So it has characteristic 0.

As a corollary one sees, that if ψ expresses a property which is true in all
fields of positive characteristic, then ψ is true in some field of characteristic
zero. And conversely, if ψ is true in fields of zero characteristic, it is true
in ‘almost all’ fields of positive characteristics. This phenomenon, and the
related phenomenon of axiomatizability vs. non-axiomatizability is explored
in the exercises.
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