
1.2 Transfinite induction and recursion

Let’s recall the induction principle of the natural numbers:

Induction principle 1. Assume A ⊆ N is as set satisfying

• 0 ∈ A,

• if n ∈ A then n+ 1 ∈ A.

Then A = N.

This justifies the ordinary proof by induction: Take a set A ⊆ N of
natural numbers satisfying some property. Show that 0 ∈ A. Then show
that whenever n is in A then n+1 must also be in A. Conclude that A must
be all of N.

Another (equivalent) form of the induction priciple is:

Induction principle 2. Assume A ⊆ N is as set satisfying

• 0 ∈ A,

• for any n ∈ N if k ∈ A for all k < n then n ∈ A.

Then A = N.

The property behind these principles is the well-order of N. If one assums
towards a contradiction that one of the principles does not hold, i.e., there
is some A 6= N with the given properties, then the least element of N\A
provides a contradiction.

Now the second form of the principle is the one that most easily can be
generalized:

Theorem 1.11 (Transfinite induction). Let P (α) be a property of ordinals.
Assume that for all ordinals β if P (γ) holds for all γ < β, then P (β) holds.
Then we have P (α) for all ordianls α.

Proof. Suppose P (α) fails for some α. Then look at the set

X = {γ ≤ α : P (γ) fails}.

X is nonempty, as α ∈ X, so as any set of ordinals is well-ordered, X has a
least element β. But P (γ) holds for all γ < β so by assumption P (β) holds,
a contradiction.

Sometimes it is convenient to use another formulation of the induction
principle:
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Theorem 1.12 (Transfinite induciton, second formulation). Let P (R) be a
property of well orderings. Assume that for every well ordring S, if P (T )
holds for every initial segment T of S, then P (S). Then P (R) holds for all
R.

Proof. Exercise.

Using transfinite induction, one can prove further properties of ordinals:

Lemma 1.13. If α, β are ordinals which are isomorphic as linear orders,
then α = β. Furthermore, the only isomorphism form α to itself is the
identity function.

Proof. Let P (α) be the property

The only ordinal isomorphic to α is α and the only isomorphism
from α to αis the identity funciton.

Assume P (γ) holds for all γ < β. We need to show that P (β) holds. So let
f : β → δ be an isomorphism. Now for each γ < β f ↾ γ is an isomorphism
γ → f(γ). As P (γ) holds, f(γ) = γ, and since this was true for all γ < β,
f is the indentity function on β. So δ = β and P (β) holds. By transfinite
induction, P (α) must hold for all ordinals α.

One can also see ordinals as canonical representatives for well-orders:

Lemma 1.14. Every well-ordered set is isomorphic to a unique ordinal.

Proof. Exercise.

Now thinking of ordinals as numbers we can generalize many classical
concepts.

Definition 1.15. For a given ordinal α, an (α-)sequence is a function whose
domain is α. An enumeration of a set X is a sequence whose range is X.
Often the notation 〈a0, a1, . . . , aβ, . . . 〉, β < α, or (aβ)β<α is used for α-
sequences.

We can also do arithmetic with ordinals. Recall that for linear orders
(I, <I) and (J,<J), their sum I+J denotes the linear order defined by x < y

if (x, y ∈ I and x <I y or x, y ∈ J and x <J y or x ∈ I and y ∈ J). Then
one can define the sum of two ordinals as the (unique) ordinal isomorphic to
the well order one gets by summing the orders α + β. One can also define
the product of two ordinals α ·β as the unique ordinal isomorphic to the well

7



order (α× β,<H) where <H is Hebrew lexicographic order (i.e., α · β is ’α, β
times’). A detailed treatment of ordinal arithmetic can be found in [End77].

The most common way of using transfinite induction is by using the first
transfinite induciton principle but splitting up the successor and limit cases.
One then proves (for a given property P )

1. (initial step) P (0) holds.

2. (successor case) If P (α) holds, then P (α + 1) also holds.

3. (limit case) If γ is a limit ordinal and P (β) holds for all β < γ, then
P (γ) holds.

Then one concludes that P (α) holds for all ordinals α.
Transfinite induction helps us prove that given properties hold for all

ordinals. A related tool is transfinite recursion, that allows us to construct
(transfinite) sequences of objects.

Theorem 1.16 (Transfinite recursion). Let G be a function on
⋃

β<α
βX

into X. Then there exists a unique α-sequence f such that f(β) = G(f ↾ β)
for all β < α.

Proof. We prove the recursion theorem by (transfinite) induction on α. So
let α0 be an ordinal and suppose the claim holds for all α < α0. Let G :⋃

β<α0

βX → X be a function.
By the assumption, for each γ < α0, there exists a unique function fγ :

γ → X such that fγ(β) = G(fγ ↾ β) for all β < γ.
Now if α0 is a successor, i.e., α0 = γ + 1 for some γ, let

f = fγ ∪ {〈γ,G(fγ)〉}.

Then f(β) = G(f ↾ β) for all β < γ + 1.
If α0 is a limit, then if δ < γ < α0 we have for all β < δ:

fγ ↾ δ(β) = fγ(β) = G(fγ ↾ β) = G((fgamma ↾ δ) ↾ β).

By uniqueness of fδ, we must have fγ ↾ δ = fδ, i.e., fδ ⊂ fγ. Thus the
function f =

⋃
γ<α0

fγ is well-defined, and for all β < α0,

f(β) = fβ+1(β) = G(fβ+1 ↾ β) = G(f ↾ β).

For uniqueness, note that if f ′ is a function from α0 to X satisfying
f ′(β) = G(f ′ ↾ β) for all β < α0, then by the uniqueness of fβ,

f ′ ↾ β = fβ = f ↾ β

8



for all β < α0. Thus

f ′(β) = G(f ′ ↾ β) = G(f ↾ β) = f(β)

for all β < α0, so f = f ′.

Transfinite recursion gives us another possibility of defining ordinal arith-
metic, by first recursively defining addition (using the successor function) and
then defining multiplication recursively based on addition. The details can
be found e.g. in [End77].
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