
1.3 Cardinals

Cardinals capture the idea of amount (five apples, seven oranges,. . . ).
To compare amounts we go back to the following preschool mathematics

idea: We are given a picture of kids and apples and want to know whether
there are as many apples as kids, but we have not yet learned to count (which
pretty much corresponds to our situation before we have cardinal numbers).
To solve the problem we try pairing up the apples with the kids and see if it
is possible to do so without any being left over of either sort (see Figure ).

Figure 1: There are as many apples as kids, and we can see this without
knowing how many they are.

Using this as our basic idea we define:

Definition 1.17. 1. A set A is equinumerous to a set B (written A ≈ B)
if there is a one-to-one function from A onto B.

2. A set A is dominated by a set B (written A 4 B) if there is a one-to-one
function from A into B.

3. A ≺ B means A 4 B but not A ≈ B.

It is easy to see that ≈ is an equivalence relation. Not all sets are equinu-
merous, though:

Theorem 1.18 (Cantor’s theorem). No set is equinumerous to its power set.

Proof. Exercise, based on the following remark.

Remark 1.19. Note that the power set P(X) of a set X is equinumerous to
the set of functions f : X → 2.

This is because any subset ofX can be coded by its characteristic function
and vice versa any function f : X → 2 can be interpreted as the characteristic
function of the set {x ∈ X : f(x) = 1}.
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As for 4, it is easy to see that it is reflexive and transitive. One can also
(without assuming the axiom of choice) prove that 4 is antisymmetric:

Theorem 1.20 (Schröder-Bernstein Theorem). If A 4 B and B 4 A, then

A ≈ B.

Proof. Assume A 4 B and B 4 A. Then by definition there are one-to-one
functions f : A → B and G : B → A. Define inductively for each n ∈ N sets
Cn by

C0 = A\ ran(g)

Cn+1 = g[f [Cn]],

where f [X] denotes the image of X under f . We then define a function
h : A → B by

h(x) =

{

f(x) if x ∈ Cn for some n,
g−1(x) otherwise.

Note that in the second case x /∈ C0, so x ∈ ran(g) and h is well defined (g
was one-to-one).

We then show that h is one-to-one. Define Dn = f [Cn] so that Cn+1 =
g[Dn]. Since f and g−1 are both one-to-one, problems can only arise when,
say, x ∈ Cm and x′ /∈

⋃

n∈ω Cn. In this case h(x) = f(x) ∈ Dn but h(x′) =
g−1(x′) /∈ Dn. So h(x) 6= h(x′).

It only remains to show that h is onto. Clearly each Dn ⊆ ran(h), since
Dn = h[Cn]. So let y ∈ B\

⋃

n<ω Dn and consider the element g(y). Now
g(y) cannot be in C0 and neither in any Cn+1. So h(g(y)) = g−1(g(y)) = y
and we are done.

So 4 is a partial order, but we would of course like it to be total (i.e., be
able to compare the size of any sets). This, however, requires us to assume
the axiom of choice. The classical form of this axiom states the existence of
a choice function:

AC 1 (Choice function). If X is a collection of nonempty sets, there is a
function f whose domain is X and which satisfies f(x) ∈ x for each x ∈ X.

The forms most useful for induction are the well-ordering and enumera-
tion principles.

AC 2 (Well-ordering principle). For any set A, there exists a well ordering
on A.
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AC 3 (Enumeration principle). Any set is equinumerous to some ordinal
number.

Outside logic the most common form is Zorn’s lemma.

AC 4 (Zorn’s Lemma). Let X be a nonempty partially ordered set, such
that each chain in X has an upper bound in X. Then X has a maximal
element.

We leave to the reader the proof that all these forms are equivalent.
Assuming the axiom of choice, one can well-order any set. By lemma 1.14

we then have a bijection between an ordinal and the set and can define the
size of the set via the ordinals:

Definition 1.21. For any set A the cardinality of A is the least ordinal
equinumerous to A, i.e., |A| = min{α ∈ Ord : α ≈ A}.

Note that a set may be equinumerous to several ordinals (using different
orderings on the set), but given such a set we can of course pick out the least.

Definition 1.22. A cardinal number is an ordinal that is not equinumerous
to any of its predecessors. Equivalently, a cardinal number is an ordinal that
is its own cardinality. Such ordinals are also called initial ordinals.

Being able to enumerate sets, we can use transfinite induction on any
sets:

Example 1.23. Every vector space has a basis.

Proof. Let V be a vector space over some field F . Using the enumeration
principle we can write V as V = {vα : α < κ}, for some cardinal κ. Then let

B = {vα : vα /∈ Span{vβ : β < α}, α < κ},

where Span(A) denotes the linear span of A, i.e. Span(A) = {a0v0 + · · · +
an−1vn−1 : n < ω, ai ∈ F, vi ∈ A} and Span(∅) = {0V } (this is to make sure
that the linear span of a set is the intersection of all subspaces containing
the set; the empty linear combination is defined to be 0V ).

It remains to show that B is a basis for V . To show this, let Vα =
Span({vβ : β < α}) and Bα = B ∩ {vβ : β < α}. We show by induction that
Bα is a basis for Vα for every α < κ.

• if α = 0, then Bα = ∅ and Vα = {0V }, so Bα spans Vα (via the empty
linear combination) and is linearly independent (as there are no vectors
in it such that a linear combination with non-zero coefficients would
yield 0).
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• if α = β + 1 for some β, and Bβ is a basis for Vβ, then by definition of
B,

vβ ∈ Bβ+1 if and only if vβ /∈ Vβ.

Now, if vβ ∈ Vβ, Vβ+1 = Vβ and Bβ+1 = Bβ is a basis of Vβ+1. If
vβ /∈ Vβ, then Bβ+1 = Bβ ∪ {vβ}. Now this spans Vβ+1: any element
of Vβ+1 can be written as a linear combination of vectors vγ, γ < β
and vβ. But since Bβ spans Vβ all vγ, γ < β can be written as linear
combinations of elements of Bβ. So any element can be written as a
linear combination of elements of Bβ and vβ, i.e., elements of Bβ+1. To
show linear independence, let a0vi0 + · · ·+ an−1vin−1

= 0, with ai ∈ F ,
vik ∈ Bβ+1. If vik ∈ Bβ, all coefficients must be zero, as Bβ is linearly
independent. If one of the vectors is vβ and its coefficient is non-zero,
then there must be other vectors with non-zero coefficient, as vβ 6= 0
(because vβ /∈ Vβ). But then vβ can be written as a linear combi-
nation of elements of Bβ, a contradiction. So Bβ+1 must be linearly
independent.

• If α is a limit, let Bα =
⋃

β<α Bβ. Note that Vα =
⋃

β<α Vβ, as any
linear combination of vectors vγ, γ < α, already appears in some Vβ.
Thus Bα spans Vα. For linear independence, note that all vectors in a
given linear combination appear already in some Bβ, so independence
follows from linear independence of the Bβ’s.

In addition to being rather intuitive, transfinite induction is also conve-
nient, when one needs to keep track of sizes during the induction. For this
we will first need some cardinal arithmetic.

Definition 1.24. Let κ, λ be cardinals.

1. κ + λ := |K ∪ L|, where K and L are any disjoint sets with |K| = κ
and |L| = λ.

2. κ ·λ := |K×L|, where K and L are any sets with |K| = κ and |L| = λ.

3. κλ := |LK|, where K and L are any sets with |K| = κ and |L| = λ and
LK = {f : L → K | f is a function}.

It is an easy exercise to show that these notions are well-defined, i.e.,
independent of the choice of sets K and L. Also, they satisfy natural prop-
erties:

Lemma 1.25. For any cardinal numbers κ, λ, µ:
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1. κ+ 0 = κ and κ× 0 = 0,

2. κ× 1 = κ,

3. κλ+µ = κλ · κµ,

4. (κ · λ)µ = κµ · λµ,

5. (κλ)µ = κλ·µ.

Proof. Exercise.

Remark 1.26. Note also, that by Remark 1.19, |P(X)| = 2|X|.

Lemma 1.27. For any cardinal numbers κ, λ, µ:

1. If κ ≤ λ then κ+ µ ≤ λ+ µ.

2. If κ ≤ λ then κ · µ ≤ λ · µ.

3. If κ ≤ λ then κµ ≤ λµ.

4. If 0 < κ ≤ λ then µκ ≤ µλ.

Proof. Exercise.

Theorem 1.28. If κ is an infinite cardinal, then κ · κ = κ.

Proof. The proof is by transfinite induction. So assume κ is an infinite cardi-
nal and for all α < κ holds, that ‘if α is an infinite cardinal, then α · α = α’.
Then for each α < κ we have |α| · |α| < κ (if κ = ω, use induction on the
natural numbers to show that for all m,n < ω, , . . . n < ω).

Define a well-order ⊳ on κ× κ by (α, β) ⊳ (γ, δ) iff

max{α, β} < max{γ, δ} or
(max{α, β} = max{γ, δ} and (α, β) <lex (γ, δ))

where <lex is the lexicographic order. It is straightforward to show that ⊳ is a
well-order (since both (κ,∈) and the lexicographic order are). Further, each
pair (α, β) has at most |max{α, β}+1×max{α, β}+1| < κ predecessors in
⊳, so (κ × κ, ⊳) is isomorphic to an ordinal ≤ κ, showing |κ × κ| ≤ κ. Since
clearly κ ≤ |κ× κ|, we have |κ× κ| = κ. This completes the induction step,
so the claim holds for all infinite cardinals.

Corollary 1.29. For any infinite cardinals κ and λ, κ + λ = κ · λ =
max{κ, λ}.
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Proof. W.l.o.g. assume κ ≤ λ. Then this is seen using Theorem 1.28 and
Lemma 1.27 and noting:

λ = 0 + λ ≤ κ+ λ ≤ λ+ λ = 2 · λ ≤ λ · λ = λ

and
λ = 1 · λ ≤ κ · λ ≤ λ · λ = λ.

By the Schröder-Bernstein theorem we are done.

Definition 1.30. By <αX we denote the set
⋃

β<α
βX. Then X<α := |<αX|.

Corollary 1.31. For any infinite cardinal κ, |kappa<ω| = κ.

Proof. By induction on n and using Theorem 1.28, one can prove that κn = κ.
So there are injective functions fn : κn → κ. Using these define the map
f :

⋃

n<ω κ
n → ω × κ by f(g) = (n, fn(g)), when g ∈ κn. f is clearly

injective, so |κ<ω| ≤ ω · κ = κ.

Having cardinal arithmetic we have access to more technical inductions:

Example 1.32. There exists a subset of the plane R
2 that intersects every

line exactly twice.

Proof. Denote by c the size of the continuum c = |R|. At this point all we
need to know of c is that it is an uncountable cardinal (follows from Cantor’s
theorem).

Also note that there are c many lines in the plane (as the number of lines
is ≥ c and ≤ c

2 = c). So we can enumerate the set of lines

L = {L : L is a line in R
2} = {Lα : α < c}.

We will construct the desired set inductively. So assume we have constructed
sets Xβ ⊂ R

2 for all β < α satisfying:

• for all γ ≤ β, |Lγ ∩Xβ| = 2,

• for all L ∈ L, |L ∩Xβ| ≤ 2,

• for γ < δ ≤ β, Xγ ⊆ Xδ,

• |Xβ| ≤ |β|+ ω = max{|β|, ω}.

Now let Yα =
⋃

β<α Xβ and note that:

• for all γ < α, |Lγ ∩ Yα| = 2,
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• for all L ∈ L, |L ∩ Yα| ≤ 2,

• for β < α, Xβ ⊆ Yα,

• |Yα| ≤ |α| · (|α|+ ω) = |α|+ ω.

So we only need to take care of intersecting Lα exactly twice. If |Yα∩Lα| = 2,
let Xα = Yα. Otherwise look at the set of lines through two points in Yα.
There are at most |α|+ω < c such lines and each intersects Lα at most once.
Thus there are infinitely many points on Lα that do not belong to any of
these lines and we can add one or two of those to Yα to get Xα intersecting
Lα exactly twice. The size does not increase.

It is crucial in the induction to know that the size of Xβ is bounded below
c and not just smaller than c. We will look closer at why below.

Definition 1.33. The successor of a cardinal α, denoted α+, is the least
cardinal greater than α. A cardinal α is said to be a limit cardinal if it is
not the successor of a cardinal.

The alephs1 are defined by transfinite recursion:

Definition 1.34. 1. ℵ0 = ω,

2. ℵβ+1 = (ℵβ)
+,

3. for α a limit, ℵα = sup{ℵβ : β < α}.

Lemma 1.35. 1. Each ℵβ is a cardinal.

2. Every infinite cardinal is equal to some ℵβ.

3. If α < β, then ℵα < ℵβ.

4. ℵα is a limit cardinal if and only if α is a limit ordinal. ℵα is a successor

cardinal if and only if α is a successor ordinal.

Proof. Exercise.

Now we can see that although the union of κ many subsets of size κ has
size κ, the same isn’t true if we replace ‘κ’ by ‘less than κ’: Look at

⋃

n<ω

ℵn = sup{ℵn : n < ω} = ℵω.

Here ℵω is written as a union of ω (i.e., < ℵω) sets of size < ℵω. Not
all infinite cardinals have this property, though, but only the singular ones,
defined below.

1Aleph, ℵ, is the first letter in the Hebrew alphabet
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Definition 1.36. Let f : α → β be a function. It is said to map α cofinally

into β if ran(f) is unbounded in β.

Definition 1.37. The cofinality of β, cf(β), is the least α such that there is
a map from α cofinally into β.

Note that clearly cf(β) ≤ β.

Definition 1.38. A cardinal κ is regular if cf(κ) = κ. A cardinal is singular

if it is not regular.

Now singular cardinals can be written as ‘unions of fewer smaller sets’,
which is the reason for the warning after example 1.32. So is c singular?
The peculiar situation is that we don’t know. In fact, we know we cannot
know, since this is independent of the axioms of set theory (ZFC or similar)
(however, c cannot be ℵω, since cf(c) > ω).

Definition 1.39 (Continuun Hypothesis, CH). The Continuum Hypothesis
is the statement 2ω = ℵ1. The Generalized Continuum Hypothesis, GCH, is
the statement ‘for all α, 2ℵα = ℵα+1’.
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