
Introduction to Number Theory

9. exercise set, solutions

1. (i) Note that 90 = 2 · 32 · 5. The only prime factor of the form ≡ 3 (mod 4) is 3. Its expo-
nent is even so 90 can be written as a sum of two squares. This can be done in 4(1 + 1) = 8
di�erent ways by the formula of the lectures.

(ii) Note that 2331 = 32 · 7 · 37. Now 7 ≡ 3 (mod 4) and its exponent is odd. Therefore 2331
cannot be written as a sum of two squares.

2. (i) Observe that 1 + 3i = i(3 − i) and 1 − 3i = −i(3 + i) so there is no contradiction as
prime factor is unique up to associates.

(ii) Similarly there is no contradiction as 3− 2i = −i(2 + 3i) and 3 + 2i = i(2− 3i).

3. Let n ∈ N. Let us consider pairs of integers (x, y) s.t. x2 + y2 = k for some integer
1 ≤ k ≤ n. The number of such pairs is

n∑
k=1

r2(k).

Identifying each such pair as a point in the plane we see that all of them lie inside a circle of
radius

√
n.

We assign to each of such lattice point a unit square with sides parallel to the coordinate
axis in the way that the given point is in one of the vertices of the assigned square (in the �rst
quadrant the given point is the upper-right corner of the assigned square. In other quadrants
assign squares which are obtained from squares of the �rst quadrant by an appropriate
rotation). Simple comparison of areas shows that

n∑
k=1

r2(k) ≤ π(
√
n)2 = πn.

The squares chosen above do cover the circle of radius
√
n− 1. Therefore

π(
√
n− 1)2 ≤

n∑
k=1

r2(k).

Now we have

π · (
√
n− 1)2

n
≤ 1

n

n∑
k=1

r2(k) ≤ π.

Letting n −→∞ gives the claim as the lower bound goes to π. �

4. Let's write down a Gaussian prime factorization for n. We know that Gaussian primes
are 1 ± i, a ± bi with a2 + b2 prime ≡ 1 (mod 4) and primes ≡ 3 (mod 4) as well as their
associates. Now

n = 2e
k∏
j=1

pαi
i

∏̀
n=1

qβn
n

= ie(1 + i)2e
k∏
j=1

(aj + bji)
αj (aj − bji)αj

∏̀
n=1

qβn
n .
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Now the number of factors is simply

4(2e+ 1)2
k∏
j=1

(αj + 1)2
∏̀
n=1

(βn + 1)2,

as aj + bji, aj − bji are not associates for any j and 1 + i|n if and only if 1− i|n. The factor
4 comes from the number of units. �

5. Let λ = a+ bi be a Gaussian integer. The following method yields its prime factors. First
we calculate N(λ) = a2 + b2 and decompose it to a product of primes

N(λ) = 2e
k∏
j=1

p
αj

j

∏̀
n=1

qβn
n ,

where pj ≡ 1 (mod 4) and qn ≡ 3 (mod 4).
If e > 0 then 1 + i is a prime factor of λ. If βn > 0 for some n then qn is a prime factor

of λ. Suppose that αj > 0. We have pj = (aj + bji)(aj − bji) for some integers aj , bj . Then
we know that at least one of the factors aj + bji, aj − bji is a prime factor of λ. Analysis for
each of these primes is easy.

Consider the example λ = 7+i. Then N(λ) = 50 = 2·52. We immediately get that 1+i is
a prime factor. Note that 5 ≡ 1 (mod 4). As 5 = (2+ i)(2− i) we need to check that which of
2+ i, 2− i divide 7+ i. But this is straightforward to do by hand. It turns out that only 2+ i
divides it. Therefore the prime factors of 7+i are 1+i and 2+i as well as their unit multiples.

6. Assume that x2 + y2 = z2 for some x, y, z ∈ Z. It is enough to consider the case where
(x, y, z) = 1. As in the lectures we can assume that x is odd and y is even. Then z must be
odd. Note that z2 = x2 + y2 = (x + iy)(x − iy). Let π ∈ Z[i] be s.t. π|x + iy, x − iy. Now
N(π)|z2 so N(π) is odd. Also π divides (x+ iy)+(x− iy) = 2x and (x+ iy)− (x− iy) = 2yi.
Thus N(π)|4x2, 4y2. As (x, y) = 1 it follows that N(π) = 1 so π is a unit. This implies that
x+ iy and x− iy are squares up to a unit.

If x+ iy = i(a+ bi)2 we get x = −2ab which is a contradiction as x was odd. Therefore
x+ iy = (a+ bi)2 for some integers a, b ∈ Z. By comparing real and imaginary parts we get
x = a2 − b2 and y = 2ab. Then we also get z = a2 + b2. Cases where units are −1,−i are
symmetric to previous cases. �

7∗. For simplicity let us consider residue classes modulo Gaussian prime a + bi. We prove
that the number of di�erent residue classes modulo a+ bi is N(a+ bi) = a2 + b2. The same
result holds also for all Gaussian integers but is slightly harder to prove.

Let us �rst consider the case where the norm a2+b2 is a prime p ≡ 1 (mod 4). If b = 0 the
statement is clear so assume that b 6= 0. Obviously i ≡ −ab−1 (mod a + bi) where b−1 ∈ Z
is s.t. bb−1 ≡ 1 (mod p). Therefore for every c+ di ∈ Z[i] we have c+ di ≡ c− dab−1 (mod
a+bi). In particular every Gaussian integer is congruent to an integer mod a+bi. By further
reducing modulo p we see that every Gaussian integer is congruent to some of the numbers
{0, 1, ..., p− 1} modulo a+ bi. Standard arguments (as earlier in the course) verify that this
is a complete residue system. Thus there were p = N(a+ bi) di�erent residue classes.

For primes p ≡ 3 (mod 4) one can use the same standard methods to prove that
{c + di : 0 ≤ c, d ≤ p − 1} is a complete residue system mod p in Z[i]. This set has
p2 = N(p) elements.

8∗∗ (i) Observe that x2 + 4 = y3 can be written as (x + 2i)(x − 2i) = y3. The greatest
common divisor of x+ 2i and x− 2i divides (x+ 2i)− (x− 2i) = 4i, so no primes (with the
exception of 1 + i and its associates) can divide both x+ 2i and x− 2i. Paying particularly
careful attention to the prime 1 + i and its associates, we can straightforwardly deduce that
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x+ 2i and x− 2i must be perfect cubes over the Gaussian integers. Now we get

x+ 2i = (a+ bi)3 = (a3 − 3ab2) + (3a2b− b3)i

for some integers a, b.
Hence, equating real and imaginary parts, we get x = a3− 3ab2 and 2 = (3a2− b2)b. The

second of these is easy to solve, noting that b must be in the set {±1,±2} leading to the
following solutions: (a, b) = (±1, 1) or (±1,−2). Substituting back into x = a3 − 3ab2, this
gives the solutions solutions (x, y) = (±2, 2), (±11, 5).

(ii) The equation is equivalent to x5 = (y + i)(y − i). If x is even, then y2 ≡ −1 (mod 4),
which is impossible. So x is odd. Then y is even and consequently the elements y + i and
y − i are coprime in Z[i]. Since x5 is a �fth power, it follows that y + i and y − i are both
�fth powers. Let a, b ∈ Z[i] be such that

y + i = (a+ bi)5 = a(a4 − 10a2b2 + 5b4) + b(5a4 − 10a2b2 + b4)i.

It holds that 1 = b(5a4 − 10a2b2 + b4) and therefore b = ±1. It is now easy to get that the
only solution is (x, y) = (1, 0).
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