
Introduction to Number Theory

8. exercise set, solutions

1. Assume that 1 + i|a + bi. Then there exists c + di ∈ Z[i] s.t. a + bi = (c + di)(1 + i).
Opening the brackets and equating real and imaginary parts we get a = c− d and b = c+ d.
This means that a + b = 2c is even and thus a and b have the same parity i.e. a ≡ b (mod
2). On the other hand, if a ≡ b (mod 2) we can �nd integers c, d s.t. a = c− d and b = c+ d.
Therefore also the other direction holds. �

2. This follows immediately from the de�nition of divisibility. �

3. We prove that no such triangle exists. Assume otherwise. Then we know that sides of the
triangle are of the form t(a2 − b2), 2abt and t(a2 + b2) for some integers a > b ≥ 1, t ≥ 1.
Now by assumption 100 = t(a2 − b2 + 2ab+ a2 + b2) or 50 = at(a+ b). In particular a|50 so
a ∈ {1, 2, 5, 10, 25, 50}. If a ≥ 10, then clearly at(a+ b) ≥ 10 · 11 > 50. Also a > 1 so actually
a ∈ {2, 5}. If a = 2 we must have b = 1 which does not yield solution as 3 6 |50. If a = 5
then 10 = t(5 + b) which has no solution when b < 5. So the equation 50 = at(a+ b) has no
solution. This contradiction �nishes the proof.

4. (i) Notice that 10 = 2 · 5 = (1 + i)(1 − i)(1 + 2i)(1 − 2i). From the lectures we know
that 1 ± i are primes. On the other hand N(1 + 2i) = N(1 − 2i) = 5 = 4 + 1 is a prime so
also 1±2i are primes. Since Z[i] is an UFD it follows that only prime factors are 1±i and 1±2i.

(ii) As N(2− 7i) = 53 is a prime of the form 4k + 1 it follows that 53 is a Gaussian prime.

5. We prove the statement by induction on n. The case n = 2 follows from the de�nition
of primality. Assume that the statement is true for some n ≥ 2. Let π be a prime and
π|λ1 · · ·λnλn+1. Then π|λ1 · · ·λn or π|λn+1. If π|λ1 · · ·λn then π|λi for some i ∈ {1, ..., n}
by induction assumption. This proves the claim. �

6. (i) Let x = {λ0;λ1, λ2, ...} be a second degree algebraic number. Then we have

Bk = − 1

αk
(Akα

2
k + Ck)

for every k. We know that αk+1 = 1/(αk − bαkc) > 1 so we have a lower bound for the
sequence {αk}. To prove that there is an uniform upper bound, recall that λk = bαkc so it
su�ces to prove that the sequence {λk} is bounded from above. By exercise 7. of set 7. this
is equivalent to the statement that there exists c > 0 s.t. the inequality∣∣∣∣x− p

q
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holds for all rationals p/q. But this is true by Liouville's theorem as x is a second degree
algebraic number. Therefore the sequence {αk} is bounded and the boundedness of {Bk}
follows immediately from the boundedness of the sequences {Ak} and {Ck}. �

(ii) Consider the function f(x, y) = 2Axy+B(x+ y)+ 2C which is clearly continuous. Then
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Now, by the mean value theorem and the triangle inequality
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for some ξ lying in the line segment connecting (pk−1/qk−1, pk−2/qk−2) and (α, α). Now by
Theorem 5.12. we have
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= 2(M +N).

This proves that the sequence {Bk} is bounded. �

7∗. Solution 1. As (α, p) = 1 it su�ces to show that αp ≡ α (mod p). Write α = a + bi,
where a, b ∈ Z. Then by binomial theorem

αp − α =

p∑
k=0

(
p

k

)
ap−k(bi)k − (a+ bi) ≡ ap + (bi)p − a− bi (mod p)

in Z[i]. As p = 4k + 1 we have ip−1 = 1. Therefore ap + (bi)p − a − bi = ap − a + i(bp − b)
which is divisible by p in Z[i] by applying Fermat's little theorem twice. Proof completed. �

If p = 4k − 1, then the statement is not true. Consider for example p = 3 and α = 1 + i.
Then (3, 1 + i) = 1 but (1 + i)2 − 1 = 2i− 1 is not divisible by 3.

Solution 2. (Jakob Wartiovaara) Again it su�ces to show that αp ≡ α (mod p). We proceed
by induction on α. If α = 0, the statement is clear. Also, as p = 4k + 1 we have εp = ε
for every unit ε ∈ {±1,±i}. Assume that the statement is true for some α. Then for any
ε ∈ {±1,±i} we have

(α+ ε)p − (α+ ε) =

p∑
k=0

(
p

k

)
ap−kεk − (a+ ε) ≡ ap + εp − a− ε ≡ αp − α ≡ 0 (mod p).

in Z[i] by the induction assumption. So if the statement is true for some α ∈ Z[i] then it is
also true for numbers α± 1 and α± i. Since any Gaussian integer can be obtained from the
origin by adding �nitely many units, the statement follows. �
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