Introduction to Number Theory 8. exercise set, solutions

1. Assume that 1 + i|a + bi. Then there exists $c + di \in \mathbb{Z}[i]$ s.t. a + bi = (c + di)(1 + i). Opening the brackets and equating real and imaginary parts we get a = c - d and b = c + d. This means that a + b = 2c is even and thus a and b have the same parity i.e. $a \equiv b \pmod{2}$. On the other hand, if $a \equiv b \pmod{2}$ we can find integers c, d s.t. a = c - d and b = c + d. Therefore also the other direction holds.

2. This follows immediately from the definition of divisibility.

3. We prove that no such triangle exists. Assume otherwise. Then we know that sides of the triangle are of the form $t(a^2 - b^2)$, 2abt and $t(a^2 + b^2)$ for some integers $a > b \ge 1$, $t \ge 1$. Now by assumption $100 = t(a^2 - b^2 + 2ab + a^2 + b^2)$ or 50 = at(a + b). In particular a|50 so $a \in \{1, 2, 5, 10, 25, 50\}$. If $a \ge 10$, then clearly $at(a + b) \ge 10 \cdot 11 > 50$. Also a > 1 so actually $a \in \{2, 5\}$. If a = 2 we must have b = 1 which does not yield solution as $3 \not |50$. If a = 5 then 10 = t(5 + b) which has no solution when b < 5. So the equation 50 = at(a + b) has no solution. This contradiction finishes the proof.

4. (i) Notice that $10 = 2 \cdot 5 = (1+i)(1-i)(1+2i)(1-2i)$. From the lectures we know that $1 \pm i$ are primes. On the other hand N(1+2i) = N(1-2i) = 5 = 4+1 is a prime so also $1\pm 2i$ are primes. Since $\mathbb{Z}[i]$ is an UFD it follows that only prime factors are $1\pm i$ and $1\pm 2i$.

(ii) As N(2-7i) = 53 is a prime of the form 4k + 1 it follows that 53 is a Gaussian prime.

5. We prove the statement by induction on n. The case n = 2 follows from the definition of primality. Assume that the statement is true for some $n \ge 2$. Let π be a prime and $\pi | \lambda_1 \cdots \lambda_n \lambda_{n+1}$. Then $\pi | \lambda_1 \cdots \lambda_n$ or $\pi | \lambda_{n+1}$. If $\pi | \lambda_1 \cdots \lambda_n$ then $\pi | \lambda_i$ for some $i \in \{1, ..., n\}$ by induction assumption. This proves the claim.

6. (i) Let $x = \{\lambda_0; \lambda_1, \lambda_2, ...\}$ be a second degree algebraic number. Then we have

$$B_k = -\frac{1}{\alpha_k} (A_k \alpha_k^2 + C_k)$$

for every k. We know that $\alpha_{k+1} = 1/(\alpha_k - \lfloor \alpha_k \rfloor) > 1$ so we have a lower bound for the sequence $\{\alpha_k\}$. To prove that there is an uniform upper bound, recall that $\lambda_k = \lfloor \alpha_k \rfloor$ so it suffices to prove that the sequence $\{\lambda_k\}$ is bounded from above. By exercise 7. of set 7. this is equivalent to the statement that there exists c > 0 s.t. the inequality

$$\left|x - \frac{p}{q}\right| \ge \frac{c}{q^2}$$

holds for all rationals p/q. But this is true by Liouville's theorem as x is a second degree algebraic number. Therefore the sequence $\{\alpha_k\}$ is bounded and the boundedness of $\{B_k\}$ follows immediately from the boundedness of the sequences $\{A_k\}$ and $\{C_k\}$.

(ii) Consider the function f(x, y) = 2Axy + B(x + y) + 2C which is clearly continuous. Then

$$B_k = q_{k-1}q_{k-2}f\left(\frac{p_{k-1}}{q_{k-1}}, \frac{p_{k-2}}{q_{k-2}}\right).$$

Let

$$M = \max_{y \in [\alpha - 1, \alpha + 1]} \left| \frac{\partial}{\partial x} f(x, y) \right| \quad \text{and} \quad N = \max_{x \in [\alpha - 1, \alpha + 1]} \left| \frac{\partial}{\partial y} f(x, y) \right|.$$

Now, by the mean value theorem and the triangle inequality

$$|B_{k}| = q_{k-1}q_{k-2} \left| f\left(\frac{p_{k-1}}{q_{k-1}}, \frac{p_{k-2}}{q_{k-2}}\right) - f(\alpha, \alpha) \right|$$

$$\leq q_{k-1}q_{k-2} \left| \frac{\partial}{\partial x} f(\xi) + \frac{\partial}{\partial y} f(\xi) \right| \cdot \left| \left(\frac{p_{k-1}}{q_{k-1}}, \frac{p_{k-2}}{q_{k-2}}\right) - (\alpha, \alpha) \right|$$

$$\leq q_{k-1}q_{k-2} \left| \frac{\partial}{\partial x} f(\xi) + \frac{\partial}{\partial y} f(\xi) \right| \cdot \left(\left| \frac{p_{k-1}}{q_{k-1}} - \alpha \right| + \left| \frac{p_{k-2}}{q_{k-2}} - \alpha \right| \right)$$
(1)

for some ξ lying in the line segment connecting $(p_{k-1}/q_{k-1}, p_{k-2}/q_{k-2})$ and (α, α) . Now by Theorem 5.12. we have

$$(1) \le q_{k-1}q_{k-2} \left(\frac{1}{q_k q_{k-1}} + \frac{1}{q_{k-1}q_{k-2}}\right) (M+N)$$
$$\le q_{k-1}q_{k-2} \cdot \frac{2}{q_{k-1}q_{k-2}} (M+N)$$
$$= 2(M+N).$$

This proves that the sequence $\{B_k\}$ is bounded.

7^{*}. Solution 1. As $(\alpha, p) = 1$ it suffices to show that $\alpha^p \equiv \alpha \pmod{p}$. Write $\alpha = a + bi$, where $a, b \in \mathbb{Z}$. Then by binomial theorem

$$\alpha^{p} - \alpha = \sum_{k=0}^{p} {\binom{p}{k}} a^{p-k} (bi)^{k} - (a+bi) \equiv a^{p} + (bi)^{p} - a - bi \pmod{p}$$

in $\mathbb{Z}[i]$. As p = 4k + 1 we have $i^{p-1} = 1$. Therefore $a^p + (bi)^p - a - bi = a^p - a + i(b^p - b)$ which is divisible by p in $\mathbb{Z}[i]$ by applying Fermat's little theorem twice. Proof completed. \Box

If p = 4k - 1, then the statement is not true. Consider for example p = 3 and $\alpha = 1 + i$. Then (3, 1 + i) = 1 but $(1 + i)^2 - 1 = 2i - 1$ is not divisible by 3.

Solution 2. (Jakob Wartiovaara) Again it suffices to show that $\alpha^p \equiv \alpha \pmod{p}$. We proceed by induction on α . If $\alpha = 0$, the statement is clear. Also, as p = 4k + 1 we have $\varepsilon^p = \varepsilon$ for every unit $\varepsilon \in \{\pm 1, \pm i\}$. Assume that the statement is true for some α . Then for any $\varepsilon \in \{\pm 1, \pm i\}$ we have

$$(\alpha + \varepsilon)^p - (\alpha + \varepsilon) = \sum_{k=0}^p \binom{p}{k} a^{p-k} \varepsilon^k - (a + \varepsilon) \equiv a^p + \varepsilon^p - a - \varepsilon \equiv \alpha^p - \alpha \equiv 0 \pmod{p}.$$

in $\mathbb{Z}[i]$ by the induction assumption. So if the statement is true for some $\alpha \in \mathbb{Z}[i]$ then it is also true for numbers $\alpha \pm 1$ and $\alpha \pm i$. Since any Gaussian integer can be obtained from the origin by adding finitely many units, the statement follows.