
Introduction to Number Theory

7. exercise set, solutions

1. Note that x2 = 7x+ 1 is equivalent to x = 7 + 1/x. Iterating this we get

x = 7 +
1

x
= 7 +

1

7 + 1
x

= 7 +
1

7 + 1
7+ 1

x

= · · ·

so the continued fraction representation of the positive root is {7; 7}. Easy computer check
gives that with 6 partial denominators one obtains the accuracy in 10 decimals.

2. We use induction on n. Statement is clear for n = 1. Assume that it holds for some n.
Then, by using recursion formulas proved in the lectures, we get

qnpn+1 − qn+1pn = qn(λnpn + pn−1)− (λnqn + qn−1)pn

= λn(qnpn − qnpn) + qnpn−1 − qnpn−1 − qn−1pn

= −(qn−1pn − qnpn−1)

= −(−1)n−1 = (−1)n,

as desired. �

3. (i) Write α = m/n. Let p/q be a rational number s.t.∣∣∣∣mn − p

q

∣∣∣∣ ≤ c

q2
. (1)

Then |q(mq − np)| ≤ c|n|. Then if m/n 6= p/q we only have �nitely many choices for q. It is
clear that for a �xed q the inequality (1) is violated when |p| is large enough. Thus there are
only �nitely many rationals p/q s.t. (1) holds. �

(ii) Let α be the value of simple in�nite continued fraction. Since |α − pn/qn| ≤ q−2
n holds

for any n ≥ 1 and convergents are reduced fractions, there are in�nitely many rationals p/q
s.t. the inequality |α−p/q| ≤ q−2 holds. If α would be rational, this contradicts to part (i). �

4. We have calculated that the continued fraction representation of the golden ration is {1; 1}
in the previous exercises. To prove that the nth convergent is Fn+2/Fn+1 we use induction
on n. The statement is clear for n = 1. If pn/qn = Fn+2/Fn+1, then

pn+1

qn+1
= 1 +

1

pn/qn
= 1 +

Fn+1

Fn+2
=
Fn+1 + Fn+2

Fn+2
=
Fn+3

Fn+2
,

as desired. �

Heuristically the golden ration is the most di�cult one to approximate by rationals as it's
continued fraction consists of only ones. Namely, then it's convergents have small denomina-
tors, which are not that good approximations.

5. The continued fractions can be calculated by using Theorem 5.11. The answers are

(i)
√
11 = {3; 3, 6}.

(ii)
√
13 = {3; 1, 1, 1, 1, 6}.

6. (i) By using the answer of the previous problem we can calculate convergents (pn, qn).
We know from the lectures that the fundamental solution for x2 −Dy2 = 1 will be (pk, qk)
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with k as small as possible. By calculating values of p2n − 11q2n until we get 1, we �nd that
the fundamental solution is (10, 3).

(ii) This is similar as the previous part but now the expression to consider is p2n− 13q2n. One
�nds that the fundamental solution is (649, 180).

7. Assume that the sequence {λn} is uniformly bounded. Then there exists M > 0 s.t.
λn ≤M for all n ∈ N. Now by Corollary 5.12. we have∣∣∣∣x− pn

qn

∣∣∣∣ > 1

(qn+1 + qn)qn
=

1

(λn+1qn + qn−1 + qn)qn
≥ 1

λn+1q2n + 2q2n
≥ 1

(M + 2)q2n
.

On the other hand, by Theorem 5.16. if∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
,

then p/q is convergent. Therefore we have for all rational p/q that∣∣∣∣x− p

q

∣∣∣∣ > min

{
1

2
,

1

M + 2

}
· 1
q2

=
1

(M + 2)q2
.

Assume that there is a constant c > 0 s.t. for all p/q ∈ Q the inequality∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q2

holds. Then by Corollary 5.12. we have

c

q2n
≤
∣∣∣∣x− pn

qn

∣∣∣∣ < 1

qnqn+1

for all n ≥ 0. This gives qn > cqn+1 = cλn+1qn + cqn−1 which yields

λn+1 <
1

c
− qn−1

qn
<

1

c
,

so the sequence {λn} is uniformly bounded. �

8∗. (i) We proceed by induction on n. For n = 0, 1 the statement is clear. Assume that the
statement holds for some n. Then we have

qn+1 ≤ λn+1qn + qn−1 ≤ λn+12
n

n∏
i=1

λi + 2n−1
n−1∏
i=1

λi = 2n−1(2λn+1λn + 1)

n−1∏
i=1

λi ≤ 2n+1
n+1∏
i=1

λi,

as desired. �

(ii) By part (i) we have qn ≤ 2n+1!+2!+...+n! ≤ 23·n! for every n ∈ N, where the last inequality
follows from an easy induction. For the sake of contradiction, assume that β is algebraic
of degree ` ≥ 2 (if β is rational, the statement is clear). Then by Liouville's theorem there
exists c > 0 s.t. the inequality∣∣∣∣β − pn

qn

∣∣∣∣ ≥ c

q`n
≥ c

q2nq
`−2
n

≥ c

q2n2
3(`−2)·n!

holds for every n ∈ N. On the otherhand,∣∣∣∣β − pn
qn

∣∣∣∣ < 1

q2nλn+1
=

1

q2n2
(n+1)!
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for every n ∈ N. Thus, for every n ∈ N, we have

1

q2n2
(n+1)!

>
c

q2n2
3(`−2)·n! .

This, however, cannot clearly hold when n is large enough. This contradiction shows that β
is transcendental. �

3


