Introduction to Number Theory

6. exercise set, solutions

1. Note that $x^{2}-D y^{2}=1$ is equivalent to $1+D y^{2}=x^{2}$. For a given D we find the minimal solution by going through values of y starting from 1 in $1+D y^{2}$ until we get a square. The following table shows the minimal solution for each D :

$$
\begin{aligned}
& D=2:(3,2) \\
& D=3:(2,1) \\
& D=5:(9,4) \\
& D=6:(5,2) \\
& D=7:(8,3) \\
& D=8:(3,1) \\
& D=10:(19,6)
\end{aligned}
$$

2. First note that if $\left|\frac{p}{q}-\sqrt{3}\right| \geq 1 / 10$, then the statement is clearly true. Hence we assume that $\left|\frac{p}{q}-\sqrt{3}\right|<1 / 10$. Now we simply estimate

$$
\left|\frac{p}{q}-\sqrt{3}\right|=\frac{\left|\frac{p^{2}}{q^{2}}-\sqrt{3}\right|}{\left|\frac{p}{q}+\sqrt{3}\right|}=\frac{\left|p^{2}-3 q^{2}\right|}{q^{2} \cdot\left|\frac{p}{q}+\sqrt{3}\right|} \geq \frac{1}{q^{2} \cdot\left|\frac{p}{q}+\sqrt{3}\right|} \geq \frac{1}{q^{2} \cdot\left(\frac{1}{10}+2 \sqrt{3}\right)}>\frac{1}{10 q^{2}}
$$

where we used the fact that $\sqrt{3} \notin \mathbb{Q}$ and the triangle inequality.
3. Set $x=\sqrt{2}-\sqrt[3]{3}$. Then $3=(\sqrt{2}-x)^{3}$ which gives $x^{3}-3 \sqrt{2} x^{2}+6 x-2 \sqrt{2}+3=0$ or $x^{3}+6 x+3=\sqrt{2}\left(3 x^{2}+2\right)$. Squaring leads to $x^{6}-6 x^{4}+6 x^{3}+12 x^{2}+36 x+1=0$. Conversely, it is easy to check that $x=\sqrt{2}-\sqrt[3]{3}$ is indeed a root of this polynomial. As the polynomial has integer coefficients, it follows that $x=\sqrt{2}-\sqrt[3]{3}$ is algebraic.
4. (a) Simply note that

$$
\frac{57}{111}=\frac{1}{\frac{111}{57}}=\frac{1}{1+\frac{54}{57}}=\frac{1}{1+\frac{1}{\frac{57}{54}}}=\frac{1}{1+\frac{1}{1+\frac{3}{54}}}=\frac{1}{1+\frac{1}{1+\frac{1}{18}}} .
$$

Thus $57 / 111=\{0 ; 1,1,18\}$.
Parts (b)-(d) can be done using the algorithm of Theorem 5.11.. The answers are
(b) $\sqrt{3}=\{1 ; 1,2,1,2, \ldots\}=\{1 ; \overline{1,2}\}$.
(c) $\frac{1+\sqrt{5}}{2}=\{1 ; 1,1,1,1, \ldots\}=\{1 ; \overline{1}\}$.
(d) $e=\{2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots\}$.
5. Let us prove that every number of the form $\frac{a+\sqrt{D}}{b}$, where $a, b, D \in \mathbb{Z}, b \neq 0$ and $\sqrt{D} \notin \mathbb{N}$, are algebraic. Denote $x=\frac{a+\sqrt{D}}{b}$. Then $D=(b x-a)^{2}$ so $b^{2} x^{2}-2 a b x+\left(a^{2}-D\right)=0$ which proves the claim.

We still have to show that every second degree algebraic is of the required form. Let x be a second degree algebraic number. Then it satisfies a polynomial equation $a x^{2}+b x+c=0$ with integer coefficients. By solving this we get

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2}-4 a c$ is a square, then x would be rational and hence degree one algebraic number. Thus x has the required form.
6. (a) We know that $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$ for all $n \geq 1$. Thus we get that

$$
\begin{aligned}
x_{k+1}+y_{k+1} \sqrt{D} & =\left(x_{1}+y_{1} \sqrt{D}\right)^{k+1} \\
& =\left(x_{1}+y_{1} \sqrt{D}\right)^{k}\left(x_{1}+y_{1} \sqrt{D}\right) \\
& =\left(x_{k}+y_{k} \sqrt{D}\right)\left(x_{1}+y_{1} \sqrt{D}\right) \\
& =x_{k} x_{1}+y_{1} y_{k} D+\left(x_{1} y_{k}+x_{k} y_{1}\right) \sqrt{D}
\end{aligned}
$$

from where we conclude that

$$
\left\{\begin{array}{l}
x_{k+1}=x_{1} x_{k}+y_{1} y_{k} D \\
y_{k+1}=y_{1} x_{k}+x_{1} y_{k}
\end{array}\right.
$$

(b) We calculate

$$
\begin{aligned}
x_{k+1} & =x_{1} x_{k}+y_{1} y_{k} D \\
& =x_{1} x_{k}+y_{1}\left(y_{1} x_{k-1}+x_{1} y_{k-1}\right) D \\
& =x_{1} x_{k}+y_{1}^{2} D x_{k-1}+y_{1} x_{1} y_{k-1} D \\
& =x_{1} x_{k}+\left(x_{1}^{2}-1\right) x_{k-1}+y_{1} x_{1} y_{k-1} D \\
& =x_{1} x_{k}+x_{1}\left(x_{1} x_{k-1}+y_{1} y_{k-1} D\right)-x_{k-1} \\
& =x_{1} x_{k}+x_{1} x_{k}-x_{k-1} \\
& =2 x_{1} x_{k}-x_{k-1},
\end{aligned}
$$

as desired.
Basically an identical calculation shows that

$$
y_{k+1}=2 x_{1} y_{k}-y_{k-1} .
$$

7. Write $q_{n}=2^{(n-1)!}$ and $p_{n}=q_{n}\left(1 \pm 2^{-1!} \pm 2^{-2!} \pm \cdots \pm 2^{-(n-1)!}\right)$ for every $n \in \mathbb{N}$. Then by Corollary 5.6. we have

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right| \leq \frac{2}{q_{n}^{n}}
$$

for all $n \in \mathbb{N}$. Suppose that ξ is rational, $\xi=a / b$. As we clearly have $\xi \neq \xi_{n}$ for every $n \in \mathbb{N}$, it follows that

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right| \geq \frac{1}{b q_{n}}
$$

In particular,

$$
\frac{2}{q_{n}^{n}} \geq \frac{1}{b q_{n}}
$$

for every $n \in \mathbb{N}$. However, this obviously cannot hold when n is large enough. Therefore ξ is irrational for any choice of signs.
$\mathbf{8}^{*}$. Let D be a positive integer, which is not a square. Let c be a constant s.t. the inequality

$$
\left|\frac{p}{q}-\sqrt{D}\right| \geq \frac{c}{q^{2}}
$$

holds for all rational numbers p / q. By using arguments of problem 2. one sees that we can take $c=1 /(4 \sqrt{D})$. Consider a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ defined as follows: set $t_{1}=1$ and if t_{n-1} is defined, then choose t_{n} be the unique integer s.t.

$$
\frac{t_{n-1}}{c}-1<t_{n} \leq \frac{t_{n-1}}{c}
$$

By Dirichlet's approximation theorem we find a pair of positive integers $\left(x_{n}, y_{n}\right)$ for each t_{n} s.t. $1 \leq y_{n} \leq t_{n}$ and

$$
\left|\frac{x_{n}}{y_{n}}-\sqrt{D}\right|<\frac{1}{y_{n}^{2}}
$$

Note that the choice of t_{n} forces the sequence y_{n} to be increasing. Then also

$$
\left|\frac{x_{n}}{y_{n}}+\sqrt{D}\right|<\frac{1}{y_{n}^{2}}+2 \sqrt{D}
$$

so

$$
\left|\frac{x_{n}^{2}}{y_{n}^{2}}-D\right|=\left|\frac{x_{n}}{y_{n}}-\sqrt{D}\right| \cdot\left|\frac{x_{n}}{y_{n}}+\sqrt{D}\right|<\frac{1}{y_{n}^{2}} \cdot\left(\frac{1}{y_{n}^{2}}+2 \sqrt{D}\right)
$$

Thus

$$
\left|x_{n}^{2}-D y_{n}^{2}\right|<1+2 \sqrt{D}
$$

for every $n \in \mathbb{N}$. In particular, every pair $\left(x_{n}, y_{n}\right)$ is a solution for one of the equations $x_{n}^{2}-D y_{n}^{2}=\ell . \ell \in\{-\lfloor 2 \sqrt{D}+1\rfloor, \ldots,\lfloor 2 \sqrt{D}+1\rfloor\} \backslash\{0\}$. By the pigeon-hole principle some $M=\lfloor 2 \sqrt{D}+1\rfloor^{2}+1$ out of solutions $\left(x_{n}, y_{n}\right)$ for $n=1, \ldots, 2\lfloor 2 \sqrt{D}+1\rfloor^{3}+1$ satisfy some equation $x^{2}-D y^{2}=k$. Now, like in the page 72 . of the lecture notes, we find a solution

$$
\left(\frac{x^{\prime} y^{\prime \prime}-D y^{\prime} x^{\prime \prime}}{k}\right)^{2}-D\left(\frac{y^{\prime} x^{\prime \prime}-y^{\prime \prime} x^{\prime}}{k}\right)^{2}=1
$$

Now the minimal positive y s.t. $x^{2}-D y^{2}=1$ is

$$
\begin{aligned}
& \leq\left|\frac{y^{\prime} x^{\prime \prime}-y^{\prime \prime} x^{\prime}}{k}\right| \\
& \leq y^{\prime} x^{\prime \prime} \\
& \leq y_{M}\left(1+y_{M} \sqrt{D}\right) \\
& \leq t_{M}\left(1+t_{M} \sqrt{D}\right) \\
& \leq \frac{1}{c^{M}}\left(1+\frac{\sqrt{D}}{c^{M}}\right) \\
& =(4 \sqrt{D})^{M}\left(1+4^{M} D^{(M+1) / 2}\right) \\
& =(4 \sqrt{D})^{\lfloor 2 \sqrt{D}+1\rfloor^{2}+1}\left(1+4^{\lfloor 2 \sqrt{D}+1\rfloor^{2}+1} D^{\left(\lfloor 2 \sqrt{D}+1\rfloor^{2}+1\right) / 2}\right) \\
& =: \phi(D)
\end{aligned}
$$

This concludes the proof.

