
Introduction to Number Theory

6. exercise set, solutions

1. Note that x2−Dy2 = 1 is equivalent to 1+Dy2 = x2. For a given D we �nd the minimal
solution by going through values of y starting from 1 in 1 +Dy2 until we get a square. The
following table shows the minimal solution for each D:

D = 2 : (3, 2)

D = 3 : (2, 1)

D = 5 : (9, 4)

D = 6 : (5, 2)

D = 7 : (8, 3)

D = 8 : (3, 1)

D = 10 : (19, 6)

2. First note that if
∣∣∣pq −√3∣∣∣ ≥ 1/10, then the statement is clearly true. Hence we assume

that
∣∣∣pq −√3∣∣∣ < 1/10. Now we simply estimate

∣∣∣∣pq −√3
∣∣∣∣ =

∣∣∣p2

q2 −
√
3
∣∣∣∣∣∣pq +

√
3
∣∣∣ =

∣∣p2 − 3q2
∣∣

q2 ·
∣∣∣pq +

√
3
∣∣∣ ≥ 1

q2 ·
∣∣∣pq +

√
3
∣∣∣ ≥ 1

q2 · ( 1
10 + 2

√
3)
>

1

10q2
,

where we used the fact that
√
3 6∈ Q and the triangle inequality. �

3. Set x =
√
2 − 3
√
3. Then 3 = (

√
2 − x)3 which gives x3 − 3

√
2x2 + 6x − 2

√
2 + 3 = 0 or

x3+6x+3 =
√
2(3x2+2). Squaring leads to x6−6x4+6x3+12x2+36x+1 = 0. Conversely,

it is easy to check that x =
√
2− 3
√
3 is indeed a root of this polynomial. As the polynomial

has integer coe�cients, it follows that x =
√
2− 3
√
3 is algebraic. �

4. (a) Simply note that

57

111
=

1
111
57

=
1

1 + 54
57

=
1

1 + 1
57
54

=
1

1 + 1
1+ 3

54

=
1

1 + 1
1+ 1

18

.

Thus 57/111 = {0; 1, 1, 18}.
Parts (b)-(d) can be done using the algorithm of Theorem 5.11.. The answers are

(b)
√
3 = {1; 1, 2, 1, 2, ...} = {1; 1, 2}.

(c) 1+
√
5

2 = {1; 1, 1, 1, 1, ...} = {1; 1}.

(d) e = {2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...}.

5. Let us prove that every number of the form a+
√
D

b , where a, b,D ∈ Z, b 6= 0 and
√
D 6∈ N,

are algebraic. Denote x = a+
√
D

b . Then D = (bx− a)2 so b2x2 − 2abx+ (a2 −D) = 0 which
proves the claim.

We still have to show that every second degree algebraic is of the required form. Let x be
a second degree algebraic number. Then it satis�es a polynomial equation ax2 + bx+ c = 0
with integer coe�cients. By solving this we get

x =
−b±

√
b2 − 4ac

2a
.
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If b2 − 4ac is a square, then x would be rational and hence degree one algebraic number.
Thus x has the required form. �

6. (a) We know that xn + yn
√
D = (x1 + y1

√
D)n for all n ≥ 1. Thus we get that

xk+1 + yk+1

√
D = (x1 + y1

√
D)k+1

= (x1 + y1
√
D)k(x1 + y1

√
D)

= (xk + yk
√
D)(x1 + y1

√
D)

= xkx1 + y1ykD + (x1yk + xky1)
√
D

from where we conclude that {
xk+1 = x1xk + y1ykD

yk+1 = y1xk + x1yk

(b) We calculate

xk+1 = x1xk + y1ykD

= x1xk + y1(y1xk−1 + x1yk−1)D

= x1xk + y21Dxk−1 + y1x1yk−1D

= x1xk + (x21 − 1)xk−1 + y1x1yk−1D

= x1xk + x1(x1xk−1 + y1yk−1D)− xk−1
= x1xk + x1xk − xk−1
= 2x1xk − xk−1,

as desired.
Basically an identical calculation shows that

yk+1 = 2x1yk − yk−1.

7. Write qn = 2(n−1)! and pn = qn(1 ± 2−1! ± 2−2! ± · · · ± 2−(n−1)!) for every n ∈ N. Then
by Corollary 5.6. we have ∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ 2

qnn

for all n ∈ N. Suppose that ξ is rational, ξ = a/b. As we clearly have ξ 6= ξn for every n ∈ N,
it follows that ∣∣∣∣ξ − pn

qn

∣∣∣∣ ≥ 1

bqn
.

In particular,

2

qnn
≥ 1

bqn
,

for every n ∈ N. However, this obviously cannot hold when n is large enough. Therefore ξ is
irrational for any choice of signs. �

8∗. Let D be a positive integer, which is not a square. Let c be a constant s.t. the inequality∣∣∣∣pq −√D
∣∣∣∣ ≥ c

q2
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holds for all rational numbers p/q. By using arguments of problem 2. one sees that we can
take c = 1/(4

√
D). Consider a sequence {tn}∞n=1 de�ned as follows: set t1 = 1 and if tn−1 is

de�ned, then choose tn be the unique integer s.t.

tn−1
c
− 1 < tn ≤

tn−1
c
.

By Dirichlet's approximation theorem we �nd a pair of positive integers (xn, yn) for each tn
s.t. 1 ≤ yn ≤ tn and ∣∣∣∣xnyn −√D

∣∣∣∣ < 1

y2n
.

Note that the choice of tn forces the sequence yn to be increasing. Then also∣∣∣∣xnyn +
√
D

∣∣∣∣ < 1

y2n
+ 2
√
D

so ∣∣∣∣x2ny2n −D
∣∣∣∣ = ∣∣∣∣xnyn −√D

∣∣∣∣ · ∣∣∣∣xnyn +
√
D

∣∣∣∣ < 1

y2n
·
(

1

y2n
+ 2
√
D

)
.

Thus

|x2n −Dy2n| < 1 + 2
√
D

for every n ∈ N. In particular, every pair (xn, yn) is a solution for one of the equations
x2n −Dy2n = `. ` ∈ {−b2

√
D + 1c, ..., b2

√
D + 1c} \ {0}. By the pigeon-hole principle some

M = b2
√
D + 1c2 + 1 out of solutions (xn, yn) for n = 1, ..., 2b2

√
D + 1c3 + 1 satisfy some

equation x2 −Dy2 = k. Now, like in the page 72. of the lecture notes, we �nd a solution(
x′y′′ −Dy′x′′

k

)2

−D
(
y′x′′ − y′′x′

k

)2

= 1.

Now the minimal positive y s.t. x2 −Dy2 = 1 is

≤
∣∣∣∣y′x′′ − y′′x′k

∣∣∣∣
≤ y′x′′

≤ yM (1 + yM
√
D)

≤ tM (1 + tM
√
D)

≤ 1

cM

(
1 +

√
D

cM

)
= (4
√
D)M

(
1 + 4MD(M+1)/2

)
= (4
√
D)b2

√
D+1c2+1

(
1 + 4b2

√
D+1c2+1D(b2

√
D+1c2+1)/2

)
=: φ(D).

This concludes the proof. �
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