Introduction to Number Theory

5. exercise set, solutions

1. Quadratic residues mod 19 can be found by calculating $1^{2}, 2^{2}, \ldots, 18^{2}(\bmod 19)$. One gets that the complete set of quadratic residues is $\{1,4,5,6,7,9,11,16,17\}$.

By Euler's criterion $(a / p) \equiv a^{(p-1) / 2}(\bmod p)$. We check which values of $a \in\{1,2, \ldots, 18\}$ satisfy $a^{9} \equiv 1(\bmod 19)$ and which satisfy $a^{9} \equiv-1(\bmod 19)$. Those satisfying $a^{9} \equiv 1(\bmod$ 19) are quadratic residues. This gives the same answer.
2. We know that $\left(\frac{0}{p}\right)=0$. Furthermore we also know that there are equally many quadratic residues and non-residues $(\bmod p)$ among $\{1,2, \ldots, p-1\}$. As $\left(\frac{j}{p}\right)=1$ if j is a quadratic residue and -1 if j is a non-residue we have

$$
\sum_{j=0}^{p-1}\left(\frac{j}{p}\right)=0+1 \cdot \frac{p-1}{2}+(-1) \cdot \frac{p-1}{2}=0
$$

as desired.
3. (i) As a is a primitive root $(\bmod p)$ we have $\left(\frac{a}{p}\right) \neq 0$ and that $a^{(p-1) / 2} \not \equiv 1(\bmod p)$. As by Euler's criterion we have $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$ it follows that we have $\left(\frac{a}{p}\right)=-1$. Now it follows from the multiplicativity of Legendre symbol that

$$
\left(\frac{a^{j}}{p}\right)=\left(\frac{a}{p}\right)^{j}=(-1)^{j}
$$

It follows immediately that there is an equal number of quadratic residues and non-residues as $(-1)^{j}=1$ if and only if j is even.
(ii) As a is a primitive root $(\bmod p)$ we have that $\{1,2, \ldots, p-1\}=\left\{a, a^{2}, \ldots, a^{p-1}\right\}$ in some order. Now there are equally many even and odd numbers among $\{1,2, \ldots, p-1\}$ so the claim follows from part (i).
4. Note that $920=2^{3} \cdot 5 \cdot 23$. The congruence $x^{2} \equiv 761(\bmod 5)$ has a solution $x=1$ and the congruence $x^{2} \equiv 761(\bmod 23)$ has a solution $x=5$. Furthermore $761 \equiv 1(\bmod 8)$ and $8 \mid 920$. Therefore the congruence $x^{2} \equiv 1(\bmod 761)$ has a solution by Theorem 4.3.(i). Now the part (ii) of Theorem 4.3. tells that the number of solutions is $2^{2+2}=16$.
5. By using the multiplicativity of the Legendre symbol, the quadratic residue law and Theorem 4.9. we have

$$
\left(\frac{52}{97}\right)=\left(\frac{2}{97}\right)^{2}\left(\frac{13}{97}\right)=\left(\frac{13}{97}\right)=\left(\frac{97}{13}\right)=\left(\frac{2}{13}\right)=-1
$$

and

$$
\left(\frac{240}{773}\right)=\left(\frac{16}{773}\right)\left(\frac{15}{773}\right)=\left(\frac{2}{773}\right)^{4}\left(\frac{5}{773}\right)\left(\frac{3}{773}\right)=\left(\frac{773}{5}\right)\left(\frac{773}{3}\right)=\left(\frac{3}{5}\right)\left(\frac{2}{3}\right)=-\left(\frac{5}{3}\right)=-\left(\frac{2}{3}\right)=1 .
$$

6. There was a mistake in the problem statement. It should have read $(7 / p)$ instead of $(5 / p)$. We have $(7 / 7)=0$ so assume that $p>7$. We have two cases to consider.
1) Assume that $p \equiv 1(\bmod 4)$. The quadratic residue law gives

$$
\left(\frac{7}{p}\right)=\left(\frac{p}{7}\right)
$$

It is easy to check that quadratic residues mod 7 are 1,2 and 4 . Now one can use the Chinese remainder theorem to solve the systems of congruences

$$
\left\{\begin{array} { l }
{ p \equiv 1 (\operatorname { m o d } 4) } \\
{ p \equiv 1 (\operatorname { m o d } 7) }
\end{array} \quad \left\{\begin{array} { l }
{ p \equiv 1 (\operatorname { m o d } 4) } \\
{ p \equiv 2 (\operatorname { m o d } 7) }
\end{array} \quad \left\{\begin{array}{l}
p \equiv 1(\bmod 4) \\
p \equiv 4(\bmod 7)
\end{array}\right.\right.\right.
$$

to see that in this case $(7 / p)=1$ if and only if $p \equiv 1,9$ or $-3(\bmod 28)$. Similarly one sees that non-residues in this case are $-11,5$ and 13 .
2) Assume that $p \equiv 3(\bmod 4)$. Then the quadratic residue law gives

$$
\left(\frac{7}{p}\right)\left(\frac{p}{7}\right)=-1
$$

so

$$
\left(\frac{7}{p}\right)=-\left(\frac{p}{7}\right)
$$

Now we can see by using similar analysis as in case 1) that $(7 / p)=-1$ if and only if $p \equiv-5,-13$ or $11(\bmod 28)$.

Therefore

$$
\left(\begin{array}{l}
\frac{7}{p}
\end{array}\right)=\left\{\begin{array}{l}
1 \text { if } p \equiv \pm 1, \pm 3, \pm 9(\bmod 28) \\
-1 \text { if } p \equiv \pm 5, \pm 11, \pm 13(\bmod 28)
\end{array}\right.
$$

7. We have $(5 / 5)=0$. Assume $p>5$. By the quadratic residue law we have

$$
\left(\frac{5}{p}\right)\left(\frac{p}{5}\right)=1
$$

Thus

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)
$$

But quadratic residues mod 5 are 1 and 4. Thus

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{l}
1 \text { if } p \equiv \pm 1(\bmod 5) \\
-1 \text { if } p \equiv \pm 2(\bmod 5)
\end{array}\right.
$$

$\mathbf{8}^{*}$. Call the sum of the third powers of quadratic residues mod p by X_{p}. It is straightforward to check that $X_{3} \equiv 1(\bmod 3), X_{5} \equiv 0(\bmod 5)$ and $X_{7} \equiv 3(\bmod 7)$. Assume that $p>7$. Let a be a primitive root $(\bmod p)$. By problem 3. quadratic residues correspond to even powers of a. Thus we have

$$
X_{p} \equiv \sum_{\ell=1}^{\frac{p-1}{2}}\left(a^{2 \ell}\right)^{3} \equiv \sum_{\ell=1}^{\frac{p-1}{2}} a^{6 \ell}(\bmod p)
$$

But now

$$
\begin{aligned}
\left(a^{6}-1\right) X_{p} & \equiv\left(a^{6}-1\right) \sum_{\ell=1}^{\frac{p-1}{2}} a^{6 \ell} \\
& \equiv a^{3(p+1)}-a^{6} \\
& \equiv a^{6}\left(a^{3 p-3}-1\right) \\
& \equiv 0(\bmod p)
\end{aligned}
$$

where the last step follows from Fermat's little theorem. As $p>7$ and a is a primitive root $(\bmod p)$ it follows that $a^{6} \not \equiv 1(\bmod p)$ so $X_{p} \equiv 0(\bmod p)$. Therefore the answer is

$$
X_{p}(\bmod p)=\left\{\begin{array}{l}
1 \text { if } p=3 \\
0 \text { if } p=5 \\
3 \text { if } p=7 \\
0 \text { if } p>7
\end{array}\right.
$$

