
Introduction to Number Theory

4. exercise set, solutions

1. Write p = ab with 1 < a, b < p. If a 6= b, then both numbers appear in the product (p−1)!.
Thus (p− 1)! + 1 ≡ 1 6≡ 0 (mod p). If a = b and p > 4, we have 1 < a < 2a ≤ p− 1. Hence
the numbers a and 2a appear in the product (p − 1)! so a2 = p divides it. The remaining
case p = 4 is easy to handle. �

2. Recall that a ∈ Z∗p is a primitive root modulo p if and only if ordp(a) = ϕ(p).

(i) It is enough to calculate the orders of 1, 2, ..., 10 and check that which of them equal to
ϕ(p) = 10. This is straightforward to do and one sees that the primitive roots mod 11 are
2, 6, 7 and 8.

(ii) It is enough to calculate the orders of 1, 2, ..., 17 and check that which of them equal to
ϕ(p) = 6. This is straightforward to do and one sees that the primitive roots mod 18 are 5
and 11.

3. Note that ord73(2) divides ϕ(73) = 72. Thus ord73(2) is of the form 2α3β for 0 ≤ α ≤ 3,
0 ≤ β ≤ 2. The smallest of these numbers s.t. 2` ≡ 1 (mod 73) is 9 so ord73(2) = 9. Similar
reasoning gives ord73(7) = 24.

It follows that

1472 ≡ 772 · 272 ≡ (724)3 · (29)8 ≡ 1 · 1 ≡ 1 (mod 73),

so 14 might be a primitive root mod 73. This is easy to con�rm.

4. Note �rst that 1125 = 32 · 53. Let f(x) = x3 − 3x2 + 27 and note that f ′(x) = 3x2 − 6x.
Consider �rst the congruence f(x) ≡ 0 (mod 3) ⇔ x3 ≡ 0 (mod 3) ⇔ x ≡ 0 (mod 3).

Consider then f(x) ≡ 0 (mod 32) ⇒ f(x) ≡ 0 (mod 3) ⇒ x ≡ 0 (mod 3). Conversely, if
x ≡ 0 (mod 3) ⇒ x = 3t ⇒ f(x) = f(3t) = 27t3 − 27t2 + 27 ≡ 0 (mod 32). Hence f(x) ≡ 0
(mod 32) if and only if x ≡ 0 (mod 3).

Consider next the congruence f(x) ≡ 0 (mod 5) ⇔ x3 − 3x2 + 2 ≡ 0 (mod 5). It is easy
to check by hand that the only solution is x ≡ 1 (mod 5). Consider then f(x) ≡ 0 (mod 52)
⇒ f(x) ≡ 0 (mod 5)⇒ x ≡ 1 (mod 5). Conversely, suppose that x ≡ 1 (mod 5)⇒ x = 5t+1.
Then by the Taylor expansion

f(x) = f(5t+ 1) ≡ f(1) + f ′(1) · 5t ≡ 0− 15t ≡ 10t ≡ 0 (mod 52)⇔ t ≡ 0 (mod5).

Thus x = 5t+ 1 = 25t′ + 1 ≡ 1 (mod 52).
Finally consider f(x) ≡ 0 (mod 53) ⇒ f(x) ≡ 0 (mod 52) ⇒ x = 25t′ + 1. Conversely, if

x = 25t′ + 1 then by the Taylor expansion

f(x) = f(25t′ + 1) ≡ f(1) + f ′(1) · 25t′ ≡ 25− 3 · 25t′ ≡ 0 (mod 53)⇔ 1− 3t′ ≡ 0 (mod 5).

This holds only when t′ ≡ 2 (mod 5). Now x = 25t′ + 1 = 1 + 25(2 + 5t′′) ≡ 51 (mod 53).
Hence f(x) ≡ 0 (mod 1125) if and only if x ≡ 0 (mod 3) and x ≡ 51 (mod 53). This gives
that x ≡ 51, 426, 801 (mod 1125).

5. Let p be an integer s.t. (p, 10) = 1. De�ne a sequence a1, a2, a3, ... in the following way.
Set a1 = 1 and

ak+1 = 10

(
ak − p

⌊
ak
p

⌋)
.
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Note that ak's are non-negative integers. Thinking how the division algorithm works one sees
that the element ak uniquely determines the kth digit of 1/p. Namely, if 1/p = 0.b2b3b4...
then

bk =

⌊
ak
p

⌋
.

As ak determines ak+1 and ak determines bk it su�ces to show that a` = a2 for some ` > 2
in order to show that the decimal expansion of 1/p is periodic.

The crucial observation is that ak+1 = a`+1 if and only if p|ak−a`. Indeed, if ak+1 = a`+1,
then

ak − p
⌊
ak
p

⌋
= a` − p

⌊
a`
p

⌋
i.e.

ak − a` = p

(⌊
ak
p

⌋
−
⌊
a`
p

⌋)
which shows that p|ak − a`. The other direction is obvious.

Hence we only need to �nd ` ∈ Z+ s.t. a` ≡ 1 (mod p) as a1 = 1. From the de�nition
of ak it follows that ak ≡ 10k−1 (mod p) for every k ≥ 1. As (p, 10) = 1 we have by Euler's
theorem

aϕ(p)+1 ≡ 10ϕ(p) ≡ 1 (mod p).

Therefore we can choose ` = ϕ(p) + 1 which �nally shows that the decimal expansion of 1/p
is periodic. �

6. We prove the statement �rst for monomials f(x) = xn, n ≥ 0. If k > n, then f (k) = 0 so
k!|f (k)(y). If 0 < k ≤ n, then

f (k)(x) = n(n− 1) · · · (n− k + 1)xn−k =

(
n

k

)
k!xn−k

so k!|f (k)(y). Finally, if k = 0 then k! = 1|f(y).
The general case for f(x) = a`x

` + a`−1x
`−1 + · · · + a1x + a0 follows by applying above

to each summand separately. �

7. Recall that {1, 2, ..., p− 1} is a �eld as p is a prime. Thus every element has a multi-
plicative inverse in this �eld (this is seen, for example, by using Bezout's theorem). Note
that only 1 and p− 1 are their own inverses. Furthermore two distinct elements cannot have
same inverse. This is seen as follows. Suppose that x and y have the same inverse a. Then
ax ≡ 1 (mod p) and ay ≡ 1 (mod p). Now ax ≡ ay (mod p). As (a, p) = 1 it follows
that x ≡ y (mod p) which implies that x and y belong to the same residue class. Above ob-
servations mean that we can pair the elements of the set {2, 3, ..., p− 2} in the desired way. �

Now Wilson's theorem follows immediately. Pair each number and it's multiplicative inverse.
Their product equals one (mod p) so (p− 1)! ≡ 1 · · · 1 · (p− 1) ≡ −1 (mod p). �

8∗. We know that a3 ≡ 1 (mod p). Thus p|(a− 1)(a2+ a+1). As ordp(a) = 3 we have a 6≡ 1
(mod p). Thus a2 + a ≡ −1 (mod p). Note that

(a+ 1)6 = a6 + 6a5 + 15a4 + 20a3 + 15a2 + 6a+ 1

≡ a6 + 6a2 + 15a+ 20 + 15a2 + 6a+ 1

≡ 21(a2 + a+ 1) + 1

≡ 1 (mod p).
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Hence ordp(a+1)|6. If ordp(a+1) = 1 then a ≡ 0 (mod p) which is impossible. If ordp(a+1) =
2 then a2 + 2a ≡ 0 (mod p) which is also impossible. If ordp(a+ 1) = 3 then 1 ≡ (a+ 1)3 =
a3 + 3(a2 + a) + 1 ≡ −1 (mod p) which is a contradiction . Therefore ordp(a+ 1) = 6. �
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