Introduction to Number Theory
4. exercise set, solutions

1. Write p = ab with 1 < a,b < p. If a # b, then both numbers appear in the product (p—1)!.
Thus (p— 1)!'+1=1%#0 (mod p). If a =b and p > 4, we have 1 < a < 2a < p— 1. Hence
the numbers a and 2a appear in the product (p — 1)! so a® = p divides it. The remaining
case p = 4 is easy to handle. O

2. Recall that a € Z; is a primitive root modulo p if and only if ord,(a) = ¢(p).

(i) It is enough to calculate the orders of 1,2,...,10 and check that which of them equal to
©(p) = 10. This is straightforward to do and one sees that the primitive roots mod 11 are
2,6,7 and 8.

(ii) It is enough to calculate the orders of 1,2, ...,17 and check that which of them equal to
¢(p) = 6. This is straightforward to do and one sees that the primitive roots mod 18 are 5
and 11.

3. Note that ordy3(2) divides ¢(73) = 72. Thus ord;3(2) is of the form 2237 for 0 < o < 3,
0 < B < 2. The smallest of these numbers s.t. 2¢ =1 (mod 73) is 9 so ord;3(2) = 9. Similar
reasoning gives ordrs(7) = 24.

It follows that

1472 =772 = (7%)3 . (29® =1-1 =1 (mod 73),
so 14 might be a primitive root mod 73. This is easy to confirm.

4. Note first that 1125 = 32 - 53. Let f(z) = 2® — 322 + 27 and note that f'(z) = 322 — 6z.
Consider first the congruence f(z) =0 (mod 3) < 2® =0 (mod 3) < 2 =0 (mod 3).

Consider then f(x) =0 (mod 3%) = f(z) =0 (mod 3) = 2 = 0 (mod 3). Conversely, if
=0 (mod 3) = x =3t = f(x) = f(3t) = 27> — 27t + 27 = 0 (mod 3?). Hence f(z) =0
(mod 3?) if and only if z = 0 (mod 3).

Consider next the congruence f(z) =0 (mod 5) < 2% — 32?2 + 2 =0 (mod 5). It is easy
to check by hand that the only solution is # = 1 (mod 5). Consider then f(z) =0 (mod 52)
= f(z) =0 (mod 5) = = = 1 (mod 5). Conversely, suppose that x =1 (mod 5) = = = 5t+1.
Then by the Taylor expansion

f(x)=f(Bt+1)= f(1)+ f/(1) -5t =0 — 15t = 10t = 0 (mod 5?) < t =0 (mod5).
Thus z = 5t + 1 =25t/ + 1 = 1 (mod 5?).
Finally consider f(z) =0 (mod 5%) = f(z) =0 (mod 5%) = z = 25¢' + 1. Conversely, if
2 = 25t + 1 then by the Taylor expansion
flz) = f(25¢ +1) = f(1)+ f'(1)-25t' =25 — 3-25t' =0 (mod 5°) < 1 — 3t' =0 (mod 5).
This holds only when #' = 2 (mod 5). Now z = 25t/ +1 = 1+ 25(2 + 5t”) = 51 (mod 53).

Hence f(z) = 0 (mod 1125) if and only if 2 = 0 (mod 3) and # = 51 (mod 5%). This gives
that = 51,426,801 (mod 1125).

5. Let p be an integer s.t. (p,10) = 1. Define a sequence a1, as, as, ... in the following way.

Set a; =1 and
ag+1 = 10 (ak —-p {%J> .
p



Note that ay’s are non-negative integers. Thinking how the division algorithm works one sees
that the element aj uniquely determines the k' digit of 1/p. Namely, if 1/p = 0.babsby...

then
by, = {“’“J .
p

As ay, determines apy1 and aj determines by it suffices to show that ay = ay for some ¢ > 2
in order to show that the decimal expansion of 1/p is periodic.
The crucial observation is that ax41 = ag41 if and only if p|ay —ay. Indeed, if ag41 = a1,

then
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which shows that play — ag. The other direction is obvious.

Hence we only need to find ¢ € Zy s.t. ay =1 (mod p) as a; = 1. From the definition
of ay, it follows that ar = 10*~! (mod p) for every k > 1. As (p,10) = 1 we have by Euler’s
theorem

i.e.

Up(p)+1 = 10°® =1 (mod p).

Therefore we can choose ¢ = ¢(p) + 1 which finally shows that the decimal expansion of 1/p
is periodic. (Il

6. We prove the statement first for monomials f(z) = 2", n > 0. If k > n, then f*) =0 so
ENf®) (y). If 0 < k < n, then

f(k)(:r) =nn—-1)---(n—k+4+1)z"* = (Z) Klan*

so k| f*)(y). Finally, if k = 0 then k! = 1|f(y).
The general case for f(x) = agz® + a1z~ + -+ + ayz + ag follows by applying above
to each summand separately. O

7. Recall that {1,2,....p— 1} is a field as p is a prime. Thus every element has a multi-
plicative inverse in this field (this is seen, for example, by using Bezout’s theorem). Note
that only 1 and p — 1 are their own inverses. Furthermore two distinct elements cannot have
same inverse. This is seen as follows. Suppose that z and y have the same inverse a. Then
ar = 1 (mod p) and ay = 1 (mod p). Now axr = ay (mod p). As (a,p) = 1 it follows
that 2 = y (mod p) which implies that  and y belong to the same residue class. Above ob-
servations mean that we can pair the elements of the set {2,3,...,p — 2} in the desired way. [J

Now Wilson’s theorem follows immediately. Pair each number and it’s multiplicative inverse.
Their product equals one (mod p) so (p—1)!=1---1-(p—1) = —1 (mod p). O

8*. We know that a® = 1 (mod p). Thus p|(a —1)(a® +a+1). As ord,(a) = 3 we have a # 1
(mod p). Thus a® +a = —1 (mod p). Note that

(a+1)% = a® + 6a® + 15a* + 20a® + 154 + 6a + 1
= a® + 6a® + 15a + 20 + 15a° + 6a + 1
=21(a*+a+1)+1
=1 (mod p).



Hence ord,(a+1)[6. If ord,(a+1) = 1 then a = 0 (mod p) which is impossible. If ord,(a+1) =
2 then a? 4+ 2a = 0 (mod p) which is also impossible. If ord,(a +1) = 3 then 1 = (a + 1)3 =
a®+3(a® +a) + 1 = —1 (mod p) which is a contradiction . Therefore ord,(a +1)=6. O



