
Introduction to Number Theory

3. exercise set, solutions

1. Let n be the number of soldiers in Han Xing's army. We know that n satis�es the following
system of congruence equations 

n ≡ 5 (mod 7)

n ≡ 9 (mod 10)

n ≡ 9 (mod 11)

Using the construction in the proof of the Chinese remainder theorem one easily �nds that
5 · 330 + 9 · 231 + 9 · 210 = 5619 is a solution for the system. Thus the general solution is
n ≡ 5619 (mod 770) or n ≡ 229 (mod 770). Thus the least possible number of soldiers in the
army is 229.

2. (i) One easily checks that the units in Z12 are [1]12 = [1]−1
12 , [5]12 = [5]−1

12 , [7]12 = [7]−1
12

and [11]12 = [11]−1
12 . The number of units is 4 = ϕ(12), as required.

(ii) Again one easily checks that the units in Z20 are [1]20, [3]20, [7]20, [9]20, [11]20, [13]20, [17]20
and [19]20. The inverses are [1]20, [7]20, [3]20, [9]20, [11]20, [17]20, [13]20 and [19]20, respectively.
The number of units is 8 = ϕ(20), as required.

3. Let n ∈ Z+ be s.t. ϕ(n) = 12. Let p be a prime divisor of n. Then p − 1|ϕ(n) = 12 so
p ≤ 13. Note that if n = pα1

1 · · · p
αk

k then

ϕ(n) = ϕ(Pα1
1 ) · · ·ϕ(pαk

k ) = pα1−1
1 · · · pαk−1

k (p1 − 1) · · · (pk − 1) ≥ (p1 − 1) · · · (pk − 1).

As (2− 1)(3− 1)(5− 1)(7− 1) > 12 it follows that n can have at most three prime factors.
Now there are three di�erent cases.

1◦) Assume that n has exactly three prime factors. Then the must be 2, 3, 5 or 2, 3, 7 as
(2 − 1)(3 − 1)(11 − 1) > 12. In the former case (3 − 1)(5 − 1)|ϕ(n) which is not possible.
So let n = 2α3β7γ . Then 12 = ϕ(n) = 2α−13β−17γ−1 · 2 · 6 = 12 · 2α−13β−17γ−1 and thus
α = β = γ = 1. Hence n = 2 · 3 · 7 = 42 which indeed works.

2◦) Assume that n has exactly two prime factors. Write n = pαqβ . Then ϕ(n) = pα−1qβ−1(p−
1)(q − 1). Now there are four subcases:

2a) Assume that α = β = 1. Then we have (p−1)(q−1) = 12. One easily checks that all the
solutions are (p, q) = (2, 13), (3, 7) and their permutations. This leads to solutions n = 26
and n = 21.

2b) Assume that α = 1 and β > 1. Then we have 12 = ϕ(n) = qβ−1(p − 1)(q − 1). As
12 = 2 · 2 · 3 it follows that q = 2 or q = 3. If q = 2, then it easy to see that β ≤ 3. In the
case β = 2 we have p = 7. In this case n = 28. If β = 3 there are no solutions. If q = 3, then
it is easy to check that β ≤ 2. If β = 2 one gets p = 3 which is not possible as p 6= q = 3.

2c) The case β = 1, α > 1 is symmetric with the case 2b).

2d) Assume that α, β > 1. In this case one of the prime factors must be 2 since otherwise
ϕ(n) > 3 · 5 > 12. Thus 2α−1qβ−1(q − 1) = 12. We clearly have α ≤ 3. If α = 2 one easily
gets q = 3 and β = 2. Thus n = 4 · 9 = 36. If α = 3 there are no solutions.
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3◦) Assume that n has exactly one prime factor. If n = pα then 12 = ϕ(n) = pα−1(p − 1)
and it is straightforward to check that p = 13, α = 1 is the only solution. Thus n = 13.

Therefore the complete set of solutions is n = 13, 21, 26, 28, 36, 42.

4. Write

f(x) ≡
n∑
i=1

aix
i (mod m).

Then, as xi − ai = (x− a)(xi−1 + xi−2a+ · · ·+ xai−2 + ai−1), it follows that

f(x) ≡
n∑
i=1

aix
i

≡
n∑
i=1

ai
(
ai + (x− a)(xi−1 + xi−2a+ · · ·+ xai−2 + ai−1)

)
≡

n∑
i=1

aia
i + (x− a)

n∑
i=1

ai(x
i−1 + xi−2a+ · · ·+ xai−2 + ai−1)

≡ f(a) + (x− a)g(x)
≡ (x− a)g(x) (mod m).

Clearly deg g = n− 1, so the proof is completed. �

5. It is enough to show that if n is composite, then 2n − 1 is also composite. So, let n = ab
with a, b ≥ 2. Now

2n − 1 = 2ab − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 1),

which shows that 2n − 1 is composite. �

6. (i) If m is prime the claim follows immediately from Fermat's little theorem as ϕ(m) =
m − 1 in this case. Suppose then m is a product of distinct primes; m = p1 · · · pk. Then,
as ϕ(p`)|ϕ(m), it follows that 2ϕ(p`) − 1|2ϕ(m) − 1. If p` 6= 2 it follows that p`|2ϕ(m) − 1 as
by Fermat's little theorem p`|2ϕ(p`) − 1. If p` = 2, then p`|2. Thus p1 · · · pk|2(2ϕ(m) − 1), as
desired. �

b) No, take m = 4 and a = 2.

7. Let p1, p2, ..., pk+1 be distinct primes. The problem is equivalent to that the system
n ≡ 0 (mod p21)

n ≡ −1 (mod p32)
...

n ≡ −(k − 1) (mod pk+1
k )

has a solution. But this follows directly from the Chinese remainder theorem as (p`i , p
m
j ) = 1

for all 1 ≤ i 6= j ≤ k and 2 ≤ ` 6= m ≤ k + 1. �

8∗. Assume that value of the polynomial P (x) is integral for every integer x. We use induction
on the degree n of the polynomial. If n = 1, then P (x) is clearly of the required form. Assume
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that the statement is true for polynomial of degree n− 1. Note that if deg P = n, then deg
Q = n− 1 where Q(x) = P (x+ 1)− P (x). By induction hypothesis we can write

Q(x) = an−1

(
x

n− 1

)
+ · · ·+ a0

(
x

0

)
.

Observe that for every integer x > 0 we have P (x) = P (0) +Q(0) + · · ·+Q(x). Then using
the identity (

0

k

)
+

(
1

k

)
+ · · ·+

(
x− 1

k

)
=

(
x

k + 1

)
for every x, k ∈ Z+ we get the required representation

P (x) = an−1

(
x

n

)
+ · · ·+ a0

(
x

1

)
+ P (0).

The converse direction is obvious. This completes the proof. �
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