Introduction to Number Theory

3. exercise set, solutions

1. Let n be the number of soldiers in Han Xing's army. We know that n satisfies the following system of congruence equations

$$
\left\{\begin{array}{l}
n \equiv 5(\bmod 7) \\
n \equiv 9(\bmod 10) \\
n \equiv 9(\bmod 11)
\end{array}\right.
$$

Using the construction in the proof of the Chinese remainder theorem one easily finds that $5 \cdot 330+9 \cdot 231+9 \cdot 210=5619$ is a solution for the system. Thus the general solution is $n \equiv 5619(\bmod 770)$ or $n \equiv 229(\bmod 770)$. Thus the least possible number of soldiers in the army is 229 .
2. (i) One easily checks that the units in \mathbb{Z}_{12} are $[1]_{12}=[1]_{12}^{-1},[5]_{12}=[5]_{12}^{-1},[7]_{12}=[7]_{12}^{-1}$ and $[11]_{12}=[11]_{12}^{-1}$. The number of units is $4=\varphi(12)$, as required.
(ii) Again one easily checks that the units in \mathbb{Z}_{20} are $[1]_{20},[3]_{20},[7]_{20},[9]_{20},[11]_{20},[13]_{20},[17]_{20}$ and $[19]_{20}$. The inverses are $[1]_{20},[7]_{20},[3]_{20},[9]_{20},[11]_{20},[17]_{20},[13]_{20}$ and $[19]_{20}$, respectively. The number of units is $8=\varphi(20)$, as required.
3. Let $n \in \mathbb{Z}_{+}$be s.t. $\varphi(n)=12$. Let p be a prime divisor of n. Then $p-1 \mid \varphi(n)=12$ so $p \leq 13$. Note that if $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ then

$$
\varphi(n)=\varphi\left(P_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{k}^{\alpha_{k}}\right)=p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1}\left(p_{1}-1\right) \cdots\left(p_{k}-1\right) \geq\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)
$$

As $(2-1)(3-1)(5-1)(7-1)>12$ it follows that n can have at most three prime factors. Now there are three different cases.
1°) Assume that n has exactly three prime factors. Then the must be $2,3,5$ or $2,3,7$ as $(2-1)(3-1)(11-1)>12$. In the former case $(3-1)(5-1) \mid \varphi(n)$ which is not possible. So let $n=2^{\alpha} 3^{\beta} 7^{\gamma}$. Then $12=\varphi(n)=2^{\alpha-1} 3^{\beta-1} 7^{\gamma-1} \cdot 2 \cdot 6=12 \cdot 2^{\alpha-1} 3^{\beta-1} 7^{\gamma-1}$ and thus $\alpha=\beta=\gamma=1$. Hence $n=2 \cdot 3 \cdot 7=42$ which indeed works.
$\left.2^{\circ}\right)$ Assume that n has exactly two prime factors. Write $n=p^{\alpha} q^{\beta}$. Then $\varphi(n)=p^{\alpha-1} q^{\beta-1}(p-$ $1)(q-1)$. Now there are four subcases:

2a) Assume that $\alpha=\beta=1$. Then we have $(p-1)(q-1)=12$. One easily checks that all the solutions are $(p, q)=(2,13),(3,7)$ and their permutations. This leads to solutions $n=26$ and $n=21$.

2b) Assume that $\alpha=1$ and $\beta>1$. Then we have $12=\varphi(n)=q^{\beta-1}(p-1)(q-1)$. As $12=2 \cdot 2 \cdot 3$ it follows that $q=2$ or $q=3$. If $q=2$, then it easy to see that $\beta \leq 3$. In the case $\beta=2$ we have $p=7$. In this case $n=28$. If $\beta=3$ there are no solutions. If $q=3$, then it is easy to check that $\beta \leq 2$. If $\beta=2$ one gets $p=3$ which is not possible as $p \neq q=3$.

2c) The case $\beta=1, \alpha>1$ is symmetric with the case 2 b).
2d) Assume that $\alpha, \beta>1$. In this case one of the prime factors must be 2 since otherwise $\varphi(n)>3 \cdot 5>12$. Thus $2^{\alpha-1} q^{\beta-1}(q-1)=12$. We clearly have $\alpha \leq 3$. If $\alpha=2$ one easily gets $q=3$ and $\beta=2$. Thus $n=4 \cdot 9=36$. If $\alpha=3$ there are no solutions.
$\left.3^{\circ}\right)$ Assume that n has exactly one prime factor. If $n=p^{\alpha}$ then $12=\varphi(n)=p^{\alpha-1}(p-1)$ and it is straightforward to check that $p=13, \alpha=1$ is the only solution. Thus $n=13$.

Therefore the complete set of solutions is $n=13,21,26,28,36,42$.
4. Write

$$
f(x) \equiv \sum_{i=1}^{n} a_{i} x^{i} \quad(\bmod m)
$$

Then, as $x^{i}-a^{i}=(x-a)\left(x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}\right)$, it follows that

$$
\begin{aligned}
f(x) & \equiv \sum_{i=1}^{n} a_{i} x^{i} \\
& \equiv \sum_{i=1}^{n} a_{i}\left(a^{i}+(x-a)\left(x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}\right)\right) \\
& \equiv \sum_{i=1}^{n} a_{i} a^{i}+(x-a) \sum_{i=1}^{n} a_{i}\left(x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}\right) \\
& \equiv f(a)+(x-a) g(x) \\
& \equiv(x-a) g(x) \quad(\bmod m) .
\end{aligned}
$$

Clearly $\operatorname{deg} g=n-1$, so the proof is completed.
5. It is enough to show that if n is composite, then $2^{n}-1$ is also composite. So, let $n=a b$ with $a, b \geq 2$. Now

$$
2^{n}-1=2^{a b}-1=\left(2^{a}-1\right)\left(2^{a(b-1)}+2^{a(b-2)}+\cdots+1\right)
$$

which shows that $2^{n}-1$ is composite.
6. (i) If m is prime the claim follows immediately from Fermat's little theorem as $\varphi(m)=$ $m-1$ in this case. Suppose then m is a product of distinct primes; $m=p_{1} \cdots p_{k}$. Then, as $\varphi\left(p_{\ell}\right) \mid \varphi(m)$, it follows that $2^{\varphi\left(p_{\ell}\right)}-1 \mid 2^{\varphi(m)}-1$. If $p_{\ell} \neq 2$ it follows that $p_{\ell} \mid 2^{\varphi(m)}-1$ as by Fermat's little theorem $p_{\ell} \mid 2^{\varphi\left(p_{\ell}\right)}-1$. If $p_{\ell}=2$, then $p_{\ell} \mid 2$. Thus $p_{1} \cdots p_{k} \mid 2\left(2^{\varphi(m)}-1\right)$, as desired.
b) No, take $m=4$ and $a=2$.
7. Let $p_{1}, p_{2}, \ldots, p_{k+1}$ be distinct primes. The problem is equivalent to that the system

$$
\left\{\begin{array}{l}
n \equiv 0\left(\bmod p_{1}^{2}\right) \\
n \equiv-1\left(\bmod p_{2}^{3}\right) \\
\vdots \\
n \equiv-(k-1)\left(\bmod p_{k}^{k+1}\right)
\end{array}\right.
$$

has a solution. But this follows directly from the Chinese remainder theorem as $\left(p_{i}^{\ell}, p_{j}^{m}\right)=1$ for all $1 \leq i \neq j \leq k$ and $2 \leq \ell \neq m \leq k+1$.

8*. Assume that value of the polynomial $P(x)$ is integral for every integer x. We use induction on the degree n of the polynomial. If $n=1$, then $P(x)$ is clearly of the required form. Assume
that the statement is true for polynomial of degree $n-1$. Note that if $\operatorname{deg} P=n$, then deg $Q=n-1$ where $Q(x)=P(x+1)-P(x)$. By induction hypothesis we can write

$$
Q(x)=a_{n-1}\binom{x}{n-1}+\cdots+a_{0}\binom{x}{0} .
$$

Observe that for every integer $x>0$ we have $P(x)=P(0)+Q(0)+\cdots+Q(x)$. Then using the identity

$$
\binom{0}{k}+\binom{1}{k}+\cdots+\binom{x-1}{k}=\binom{x}{k+1}
$$

for every $x, k \in \mathbb{Z}_{+}$we get the required representation

$$
P(x)=a_{n-1}\binom{x}{n}+\cdots+a_{0}\binom{x}{1}+P(0)
$$

The converse direction is obvious. This completes the proof.

