
Introduction to Number Theory

2. exercise set, solutions

1. Note that Pj(xj) = P (x1, ..., xj , ..., xk) is a polynomial of one variable for every 1 ≤ j ≤ k.
Thus by applying repeatedly Theorem 2.4. we have

P (x1, ..., xk) ≡ P (y1, x2, ..., xk)
≡ P (y1, y2, x3, ..., xk)
. . .

≡ P (y1, ..., yk−1, xk)

≡ P (y1, ..., yk) (mod m),

as desired. �

2. Addition and multiplication tables for Z6:

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

Addition and multiplication tables for Z7:

+ [0] [1] [2] [3] [4] [5] [6]
[0] [0] [1] [2] [3] [4] [5] [6]
[1] [1] [2] [3] [4] [5] [6] [0]
[2] [2] [3] [4] [5] [6] [0] [1]
[3] [3] [4] [5] [6] [0] [1] [2]
[4] [4] [5] [6] [0] [1] [2] [3]
[5] [5] [6] [0] [1] [2] [3] [4]
[6] [0] [1] [2] [3] [4] [5] [6]

· [0] [1] [2] [3] [4] [5] [6]
[0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6]
[2] [0] [2] [4] [6] [1] [3] [5]
[3] [0] [3] [6] [2] [5] [1] [4]
[4] [0] [4] [1] [5] [2] [6] [3]
[5] [0] [5] [3] [1] [6] [4] [2]
[6] [0] [6] [5] [4] [3] [2] [1]

(ii) Those elements which posses a square root lie on the diagonal of the multiplication
table. So, in Z6 those are [0], [1], [3], [4] and in Z7 those are [0], [1], [2], [4]. Roots are√

[0] = [0],
√
[1] = {±[1]},

√
[3] = [3],

√
[4] = {±[2]} in Z6 and

√
[0] = [0],

√
[1] = {±[1]},√

[2] = {±[3]},
√
[4] = {±[2]} in Z7.

3. (i) As p, q ∈ P \ {2} and p 6= q it follows that ϕ(pq) = (p− 1)(q− 1). Now Euler's theorem
gives 2(p−1)(q−1) = 2ϕ(pq) ≡ 1 (mod pq). �

(ii) No. For example, take p = q = 3.

4. Let us denote [U ] = {[u]|u ∈ U}. By de�nition U = {a1, ..., am} is a complete residue
system (mod m) if [U ] = Zm = {[1], ..., [m]}.

�⇒� Let U = {a1, ..., am} be a complete residue system (mod m). By de�nition |U | = m
so (i) holds. If [ai] = [aj ] for i 6= j, then the set [U ] = Zm has less than m elements, a
contradiction. So (ii) holds. Let a ∈ Z. Now [a] ∈ Zm = [U ], so there exists u ∈ U s.t. a ≡ u
(mod m). Thus also (iii) holds.

�⇐� We consider di�erent combinations of (i), (ii) and (iii).
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Assume that (i) and (ii) hold. By (i) we can write U = {a1, ..., am}. Let us choose
an arbitrary a ∈ {1, ...,m}. It is enough to show that [a] ∈ [U ]. Let us consider classes
{[a], [a1], ..., [am]} ⊂ Zm. There are m + 1 such classes but |Zm| = m. Therefore two of the
classes are equal. Condition (ii) implies [ai] 6= [aj ] for i 6= j so we must have [a] = [ai] for
some i. Thus [a] ∈ [U ].

Assume that (i) and (iii) hold. By (i) we can write U = {a1, ..., am}. If [ai] = [aj ] for
i 6= j, we have |[U ]| < m. Thus there exists [a] ∈ Zm s.t. [a] 6∈ [U ]: Hence there us no
element u ∈ U s.t. u ≡ a (mod m). This contradicts (iii). Thus (ii) holds.

Assume that (ii) and (iii) hold. Write U = {a1, a2, ...}. As elements of U are mutually
incongruent (mod m) we have |U | ≤ m. By (iii) we can �nd u ∈ U s.t. a ≡ u (mod m) for
every a ∈ {1, ...,m} so |U | ≥ m. Therefore |U | = m, so (i) holds. �

5. Let m =
∏
pαk

k and n =
∏
pβk

k . The condition n|m implies that αk ≥ βk for every k. Now
we use the multiplicativity of Euler's function to obtain

ϕ(m) =
∏

ϕ (pαk

k ) and ϕ(n) =
∏

ϕ
(
pβk

k

)
.

The claim follows if we show that ϕ(pβk

k )|ϕ(pαk

k ) for every k. But

ϕ(pαk

k )

ϕ(pβk

k )
= pαk−βk

k

is an integer as αk ≥ βk. Proof completed. �

6. (i) Observe that k!(p− k)!
(
p
k

)
= p! for all 1 ≤ k ≤ p− 1. The right-hand side is divisible

by p but the term k!(p− k) is not. Thus p divides
(
p
k

)
. �

(ii) The Binomial theorem gives

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k

≡
(
p

0

)
ap + 0 + · · ·+ 0 +

(
p

p

)
bp

≡ ap + bp (mod p)

by using part (i). �

Let us then prove that (a1 + · · · + a`)
p ≡ ap1 + · · · + ap` (mod p) for all a1, ..., a`. We induct

on `. Case ` = 1 is obvious and ` = 2 is treated above. Assume this is true for some ` ≥ 2.
Then by the case ` = 2 and inductive assumption

(a1 + · · ·+ a`)
p ≡ (a1 + · · ·+ a`−1)

p + ap`
≡ ap1 + · · ·+ ap`−1 + ap` (mod p),

as desired. �

Choosing a1 = · · · = a` = 1 we get `p ≡ ` (mod p) which is Fermat's little theorem. �

7∗. Choose an element x contained in the union of all sets and let A1, A2, . . . , A` be the sets
containing x. Since the element x is counted precisely once by the left-hand side of equation∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+ · · ·+ (−1)n−1|A1 ∩ · · · ∩An|,
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we need to show that it is counted precisely once by the right-hand side. On the right-hand
side, the only non-zero contributions occur when all the subsets in a particular term contain
the chosen element, that is, all the subsets are selected from A1, A2, . . . , A`. The contribution
is one for each of these sets (plus or minus depending on the term) and therefore is just the
(signed) number of these subsets used in the term. This number is(

`

1

)
−
(
`

2

)
+ · · ·+ (−1)`+1

(
`

`

)
= 1− (1− 1)` = 1,

where we used the binomial theorem. This completes the proof. �
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