## Introduction to Number Theory

## 1. exercise set, solutions

1. As $a \mid b_{j}$ for $j=1, \ldots, \ell$ there exists $c_{j} \in \mathbb{Z}$ s.t. $b_{j}=a c_{j}$ for every $j$. Then $b_{1}+\cdots+b_{\ell}=$ $\left(c_{1}+\cdots c_{\ell}\right) a$ meaning that $a \mid b_{1}+\cdots+b_{\ell}$ as $c_{1}+\cdots+c_{\ell} \in \mathbb{Z}$.
2. Write the prime decompositions

$$
m=\prod_{k=1}^{\infty} p_{k}^{\alpha_{k}} \text { and } n=\prod_{k=1}^{\infty} p_{k}^{\beta_{k}} .
$$

We prove that

$$
(m, n)=\prod_{k=1}^{\infty} p_{k}^{\gamma_{k}}
$$

where $\gamma_{k}=\min \left(\alpha_{k}, \beta_{k}\right)$, satisfies the conditions required it to be the g.c.d of $m$ and $n$. Clearly $(m, n) \geq 1$. Also $(m, n) \mid m$ as $\alpha_{k} \geq \min \left(\alpha_{k}, \beta_{k}\right)=\gamma_{k}$. Similarly, $\beta_{k} \geq \gamma_{k}$ gives $(m, n) \mid n$. Suppose then that $d^{\prime} \mid m, n$ and write $d^{\prime}=\prod_{k=1}^{\infty} p_{k}^{\delta_{k}}$. The assumption implies that $\delta_{k} \leq \min \left(\alpha_{k}, \beta_{k}\right)=\gamma_{k}$ for every $k$. But this means that $d^{\prime} \mid d$. This proves the last claim.
3. Let us show that $h$ has the required properties. Clearly $h \geq 1$. Furthermore, since $\gamma_{k}=\max \left(\alpha_{k}, \beta_{k}\right) \geq \alpha_{k}$ it follows that $p_{k}^{\gamma_{k}} \geq p_{k}^{\alpha_{k}}$ for every $k$. Thus $h \mid a$. Similarly we get $h \mid b$ as $\gamma_{k} \geq \beta_{k}$ for every $k$. Assume that $a \mid h^{\prime}$ and $b \mid h^{\prime}$. Let $p_{k}$ be a prime which divides each of $a, b, h^{\prime}$. Then also $p_{k} \mid h$. Let $\ell_{k}$ be an integer s.t. $p_{k}^{\ell_{k}} \mid h^{\prime}$ but $p_{k}^{\ell_{k}+1} \nmid h^{\prime}$. As $a \mid h^{\prime}$ we have $\ell_{k} \geq \alpha_{k}$. Similarly $b \mid h^{\prime}$ implies that $\ell_{k} \geq \beta_{k}$. Therefore $\ell_{k} \geq \max \left(\alpha_{k}, \beta_{k}\right)$. Doing similar analysis for each prime factor of $h$ we deduce from the prime decomposition that $h \mid h^{\prime}$, as required.
4. (i) We have

$$
\begin{aligned}
& 2015=2 \cdot 755+505 \\
& 755=1 \cdot 505+250 \\
& 505=2 \cdot 250+5 \\
& 250=50 \cdot 5
\end{aligned}
$$

Therefore $(2015,755)=5$.
(ii) Let us first find $(276,1578)$. By Euclid's algorithm:

$$
\begin{aligned}
1578 & =5 \cdot 276+198 \\
276 & =1 \cdot 198+78 \\
198 & =2 \cdot 78+42 \\
78 & =1 \cdot 42+36 \\
42 & =1 \cdot 36+6 \\
36 & =6 \cdot 6
\end{aligned}
$$

so $(276,1578)=6$.
Running this backwards we get $6=7 \cdot 1578-40 \cdot 276$. As $714=119 \cdot 6$ we get that $714=276 \cdot(-4760)+1578 \cdot 833$. Now the general solution is $(x, y)=(-4760+263 t, 833-46 t)$, $t \in \mathbb{Z}$, by Theorem 1.12 . of the lecture notes.
5. (i) Let us define

$$
d=\min \left\{a_{1} x_{1}+\cdots a_{n} x_{n}: x_{1}, \ldots, x_{n} \in \mathbb{Z}, a_{1} x_{1}+\cdots+a_{n} x_{n}+\geq 1\right\}
$$

We show that this satisfies all the conditions required for the g.c.d. Write $d=a_{1} x_{1}^{\prime}+\cdots a_{n} x_{n}^{\prime}$ for some integers $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \in \mathbb{Z}$. Clearly $d \geq 1$. It is also obvious that if $d^{\prime} \mid a_{1}, \ldots, a_{n}$ then $d^{\prime} \mid d$. It remains to show that $d \mid a_{1}, \ldots, a_{n}$. By symmetry it is enough to show that $d \mid a_{1}$. For the sake of contradiction, suppose that $d \nmid a_{1}$. Then we can write $a_{1}=k d+r$ for some integers $k, r$ with $0<r<d$. But then

$$
1 \leq r=a_{1}-k d=a_{1}\left(1-k x_{1}^{\prime}\right)+a_{2}\left(-k x_{2}^{\prime}\right)+\cdots a_{n}\left(-k x_{n}^{\prime}\right)<d
$$

which contradicts the choice of $d$. Therefore $d$ is indeed the greatest common divisor of $a_{1}, \ldots, a_{n}$.
(ii) This follows immediately from the above proof.
6. The condition $a \equiv b(\bmod m)$ means that $a=b+m k$ for some integer $k$. Now, $(b, m) \mid b, m$ so the above implies that $(b, m) \mid a$. Furthermore, $(b, m) \mid m$ giving $(b, m) \mid(a, m)$. Similar argument shows that $(a, m) \mid(b, m)$. These together yield $(a, m)=(b, m)$.
$\mathbf{7}^{*}$. As $(4 k+1)(4 \ell+1)=4(4 k \ell+k \ell)+1$ for every $k, \ell \in \mathbb{N}$, the set is closed under multiplication.
Let us then prove that every element of $\widetilde{\mathbb{N}}$ can be written as product of primes. Suppose otherwise. Let $n \in \widetilde{\mathbb{N}}, n>1$ be the smallest element which is not a product of 'primes'. In particular, $n$ is not a 'prime'. Thus $n=n_{1} n_{2}$ where $n_{1}, n_{2} \in \widetilde{\mathbb{N}}$. But by assumption $n_{1}$ and $n_{2}$ can be written as products of 'primes' meaning that also $n$ is product of 'primes'. This is a contradiction. Therefore every element of $\widetilde{\mathbb{N}}$ is a product of 'primes'.

Prime factorization is not unique as the following example shows. We have $693=9 \cdot 77=$ $21 \cdot 33$, but $9,21,33$ and 77 are 'primes'.

