
Introduction to Number Theory

1. exercise set, solutions

1. As a|bj for j = 1, ..., ` there exists cj ∈ Z s.t. bj = acj for every j. Then b1 + · · · + b` =
(c1 + · · · c`)a meaning that a|b1 + · · ·+ b` as c1 + · · ·+ c` ∈ Z. �

2. Write the prime decompositions

m =

∞∏
k=1

pαk

k and n =

∞∏
k=1

pβk

k .

We prove that

(m,n) =

∞∏
k=1

pγkk ,

where γk = min(αk, βk), satis�es the conditions required it to be the g.c.d of m and n.
Clearly (m,n) ≥ 1. Also (m,n)|m as αk ≥ min(αk, βk) = γk. Similarly, βk ≥ γk gives
(m,n)|n. Suppose then that d′|m,n and write d′ =

∏∞
k=1 p

δk
k . The assumption implies that

δk ≤ min(αk, βk) = γk for every k. But this means that d′|d. This proves the last claim. �

3. Let us show that h has the required properties. Clearly h ≥ 1. Furthermore, since
γk = max(αk, βk) ≥ αk it follows that pγkk ≥ p

αk

k for every k. Thus h|a. Similarly we get h|b
as γk ≥ βk for every k. Assume that a|h′ and b|h′. Let pk be a prime which divides each
of a, b, h′. Then also pk|h. Let `k be an integer s.t. p`kk |h′ but p

`k+1
k - h′. As a|h′ we have

`k ≥ αk. Similarly b|h′ implies that `k ≥ βk. Therefore `k ≥ max(αk, βk). Doing similar
analysis for each prime factor of h we deduce from the prime decomposition that h|h′, as
required. �

4. (i) We have

2015 = 2 · 755 + 505

755 = 1 · 505 + 250

505 = 2 · 250 + 5

250 = 50 · 5.

Therefore (2015, 755) = 5.

(ii) Let us �rst �nd (276, 1578). By Euclid's algorithm:

1578 = 5 · 276 + 198

276 = 1 · 198 + 78

198 = 2 · 78 + 42

78 = 1 · 42 + 36

42 = 1 · 36 + 6

36 = 6 · 6

so (276, 1578) = 6.
Running this backwards we get 6 = 7 · 1578 − 40 · 276. As 714 = 119 · 6 we get that

714 = 276·(−4760)+1578·833. Now the general solution is (x, y) = (−4760+263t, 833−46t),
t ∈ Z, by Theorem 1.12. of the lecture notes.
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5. (i) Let us de�ne

d = min{a1x1 + · · · anxn : x1, ..., xn ∈ Z, a1x1 + · · ·+ anxn+ ≥ 1}.

We show that this satis�es all the conditions required for the g.c.d. Write d = a1x
′
1+ · · · anx′n

for some integers x′1, ..., x
′
n ∈ Z. Clearly d ≥ 1. It is also obvious that if d′|a1, ..., an then d′|d.

It remains to show that d|a1, ..., an. By symmetry it is enough to show that d|a1. For the
sake of contradiction, suppose that d - a1. Then we can write a1 = kd+ r for some integers
k, r with 0 < r < d. But then

1 ≤ r = a1 − kd = a1(1− kx′1) + a2(−kx′2) + · · · an(−kx′n) < d

which contradicts the choice of d. Therefore d is indeed the greatest common divisor of
a1, ..., an. �

(ii) This follows immediately from the above proof. �

6. The condition a ≡ b (mod m) means that a = b+mk for some integer k. Now, (b,m)|b,m
so the above implies that (b,m)|a. Furthermore, (b,m)|m giving (b,m)|(a,m). Similar argu-
ment shows that (a,m)|(b,m). These together yield (a,m) = (b,m). �

7∗. As (4k+1)(4`+1) = 4(4k`+k`)+1 for every k, ` ∈ N, the set is closed under multiplication.

Let us then prove that every element of Ñ can be written as product of primes. Suppose
otherwise. Let n ∈ Ñ, n > 1 be the smallest element which is not a product of 'primes'. In
particular, n is not a 'prime'. Thus n = n1n2 where n1, n2 ∈ Ñ. But by assumption n1 and
n2 can be written as products of 'primes' meaning that also n is product of 'primes'. This is
a contradiction. Therefore every element of Ñ is a product of 'primes'. �

Prime factorization is not unique as the following example shows. We have 693 = 9 · 77 =
21 · 33, but 9, 21, 33 and 77 are 'primes'.
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