INTRODUCTION TO NUMBER THEORY. (Fall 2015)

6. EXERCISES (Mo 02.11)

- **1.** Find the smallest (positive) solution to Pell's equation $x^2 Dy^2 = 1$ for $D \in \{2, 3, 5, 6, 7, 8, 10\}$.
- **2.** Show directly (without using Liouville's theorem) that $\left|\frac{p}{q} \sqrt{3}\right| \geq \frac{1}{10q^2}$ for all rational numbers p/q.
- **3.** Verify that the number $\sqrt{2} \sqrt[3]{3}$ is an algebraic number by finding a polynomial equation with integer coefficients that it satisfies.
- 4. Find the continued fraction representations of the numbers

(i)
$$\frac{57}{111}$$
 (ii) $\sqrt{3}$ (ii) $(\sqrt{5}+1)/2$ (ii) e

[Hint: do the last one by computer]

5. Show that second order algebraic (real) numbers are exactly the numbers of the form

$$x = (a + \sqrt{D})/b$$

where a, b, D are integers such that $b \neq 0$ and $D \geq 2$ is not a square.

6. (i) Let (x_1, y_1) , (x_2, y_2) ,... be the positive solutions of Pell's equation $x^2 - Dy^2 = 1$ in increasing order. Show that they satisfy the recursion

$$\begin{cases} x_{k+1} = ax_k + by_k \\ y_{k+1} = cx_k + dy_k \end{cases}$$

where a, b, c, d are suitable integers .

(ii) Show that the sequence (x_k) satisfies the recursion

$$x_{k+1} = 2x_1x_k - x_{k-1}.$$

What is the corresponding formula for (y_k) ?

7. Show that the Liouville numbers

$$\xi = 1 \pm \frac{1}{2^{1!}} \pm \frac{1}{2^{2!}} \pm \frac{1}{2^{3!}} \pm \frac{1}{2^{4!}} \pm \dots$$

are not rational.

8^{*}. Try to make the proof given in the lectures quantitative, i.e. find some concrete function ϕ such that $y_1 \leq \phi(D)$, where y_1 is the smallest positive solution of Pell's equation $x^2 - Dy^2 = 1$.

Hints:

[Use the identity $(\sqrt{3} - p/q)(\sqrt{3} + p/q) = 3 - p^2/q^2$ and multiply by q^2 .] [Use the representation given by Thm 5.4] E.2:

E.6:

[Observe that for two *different* rational numbers we have $|\frac{p}{q} - \frac{p'}{q'}| \ge \frac{1}{qq'}$.] E.7: