INTRODUCTION TO NUMBER THEORY. (Fall 2015)

6. EXERCISES (Mo 02.11)

1. Find the smallest (positive) solution to Pell's equation $x^{2}-D y^{2}=1$ for $D \in\{2,3,5,6,7,8,10\}$.
2. Show directly (without using Liouville's theorem) that $\left|\frac{p}{q}-\sqrt{3}\right| \geq \frac{1}{10 q^{2}}$ for all rational numbers p / q.
3. Verify that the number $\sqrt{2}-\sqrt[3]{3}$ is an algebraic number by finding a polynomial equation with integer coefficients that it satisfies.
4. Find the continued fraction representations of the numbers
(i) $\frac{57}{111}$
(ii) $\sqrt{3}$
(ii) $(\sqrt{5}+1) / 2$
(ii) e
[Hint: do the last one by computer]
5. Show that second order algebraic (real) numbers are exactly the numbers of the form

$$
x=(a+\sqrt{D}) / b
$$

where a, b, D are integers such that $b \neq 0$ and $D \geq 2$ is not a square.
6. (i) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ be the positive solutions of Pell's equation $x^{2}-D y^{2}=1$ in increasing order. Show that they satisfy the recursion

$$
\left\{\begin{array}{l}
x_{k+1}=a x_{k}+b y_{k} \\
y_{k+1}=c x_{k}+d y_{k},
\end{array}\right.
$$

where a, b, c, d are suitable integers .
(ii) Show that the sequence $\left(x_{k}\right)$ satisfies the recursion

$$
x_{k+1}=2 x_{1} x_{k}-x_{k-1} .
$$

What is the corresponding formula for $\left(y_{k}\right)$?
7. Show that the Liouville numbers

$$
\xi=1 \pm \frac{1}{2^{1!}} \pm \frac{1}{2^{2!}} \pm \frac{1}{2^{3!}} \pm \frac{1}{2^{4!}} \pm \ldots
$$

are not rational.
8^{*}. Try to make the proof given in the lectures quantitative, i.e. find some concrete function ϕ such that $y_{1} \leq \phi(D)$, where y_{1} is the smallest positive solution of Pell's equation $x^{2}-D y^{2}=$ 1.

Hints:

E.2: [Use the identity $(\sqrt{3}-p / q)(\sqrt{3}+p / q)=3-p^{2} / q^{2}$ and multiply by q^{2}.]
E.6: [Use the representation given by Thm 5.4]
E.7: [Observe that for two different rational numbers we have $\left|\frac{p}{q}-\frac{p^{\prime}}{q^{\prime}}\right| \geq \frac{1}{q q^{\prime}}$.]

