INTRODUCTION TO NUMBER THEORY. (Fall 2015)

4. EXERCISES (Mo 5.10)

1. Verify the converse direction of Wilson's Thm: if $p \geq 2$ is not a prime, then $p \not X((p-1)!+1)$.
2. Find all the primitive roots mof p when
(i) $\mathrm{p}=11$
(ii) $\mathrm{p}=18$.
3. Determine $\operatorname{ord}_{73}(2)$ and $\operatorname{ord}_{73}(7)$. Can use use this information to guess a primitive root mod $73 ?$
4. Find all the roots of the congruence

$$
x^{3}-3 x^{2}+27 \equiv 0(\bmod 1125)
$$

by using the method developed in the lectures.
5. Try to deduce that all rational numbers of the form $1 / p$, where $(p, 10)=1$ can be written with a periodic decimal expansion by using the division algorithm taught in high schools.
6. Let f be a polynomial with integer coefficients. Show that $\frac{f^{(k)}(y)}{k!} \in \mathbf{Z}$ for all $a \in \mathbf{Z}$ and $k \geq 0$.
7. Give the details to the following proof (due to Gauss) of Wilson's Theorem: Let $p \geq 5$ be a prime. Consider the follwing elements of $Z_{p}:\{\overline{2}, \overline{3}, \ldots, \overline{p-2}\}$. Show that they can be paired in such a way that the two elements of each pair are (multiplicative) inverses of each others. Then Wilson's Theorem follows easily.
8^{*}. Show that if p is an odd prime and $\operatorname{ord}_{p}(a)=3$, then $\operatorname{ord}_{p}(a+1)=6$

Hints:

E.5: [Recall the division algorithm, compute several examples and look what happens!]
E.6: [Consider first single monomials.]

