
Normal forms

Introduction and notation

The text which follows aims at adding more details to the very concise discussion which can be found

• Chapter 2 of [1]

Self-consisten rigorous discussions of normal forms can be found in

• Chapter 3 of [3]

• Chapter 19 of [4]

Both presentations rely on results derived in the research paper [2], which is also a recommended reading.
As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as
a generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x
at time t = 0:

φt = Φt ◦ x (0.2)

1 Normal form theory

The idea behind normal form theory is to construct a change of variables mapping a given ordinary differential
equation driven by a non-linear vector field into one driven by a vector field as “close as possible” to linear. We won’t
use here the hyperbolicity assumption for the matrix A specifying the linear flow.

Concretely, let us suppose that we want to analyze the d-dimensional ordinary differential equation

φ̇t = f(φt) ≡ A · φt + g(φt) (1.1)

with

g(0) = 0 & (∂x ⊗ g)(0) = 0 (1.2)

Were we able to find a change of variables mapping (1.1) into

ψ̇t = A ·ψt (1.3)

at least locally in some neighborhood of the origin, we could gain quantitative insight into the flow solution of (1.1)
by solving the linear problem (1.3).
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As it will become clear in the following, in general it is not possible to find such a change of variables. We should
instead more conservatively look for a change of variable mapping (1.1) into

ψ̇t = A ·ψt + n(ψt) (1.4)

Here, the vector field n also enjoys the properties

n(0) = 0 & (∂x ⊗ n)(0) = 0 (1.5)

Furthermore, we will define it “constructively” by reabsorbing into n all non-linear terms that we cannot remove
performing a change of variables in (1.1).

Specifically, let U andW be neighborhoods of the origin. We look for a map

H : U 7→ W (1.6)

such that for every t for which solutions of (1.1) exist we can write

φt = H(ψt) ≡ ψt + h(ψt) (1.7)

where ψt is solution of (1.4). We have therefore

ψ̇t · ∂ψt
H(ψt) =

(A ·ψt) · ∂ψt
H(ψt) + n(ψt) · ∂ψt

H(ψt) = A ·H(ψt) + g ◦H(ψt) (1.8)

Since the equality must hold independently of t(
A · x+ n(x)

)
·
(
1d + ∂x ⊗ h(x)

)
= A ·

(
x+ h(x)

)
+ g(x+ h(x)) (1.9)

We finally arrive to(
1d x · AT · ∂x − A

)
· h(x) = g(x+ h(x))− n(x)− n(x) · (∂x ⊗ h)(x) (1.10)

Note that in (1.10) there are two unknown vector fields: h and n. In order to make sense of (1.10) we need to recall

i Setting n = 0 yields the equation(
1d x · AT · ∂x − A

)
· h(x) = g(x+ h(x)) (1.11)

specifying the vector field mapping (1.1) into a linear system.

ii Under our working hypotheses g, h, n are vector field vanishing at least quadratically at the origin.

iii We are interested in solving locally (1.10) locally around the origin. This means expanding all fields in Taylor
series.

Based on the foregoing considerations, our solution scheme for (1.10) is to solve it by matching order by order
the Taylor expansions of the left with the right hand side. In doing so, we set the coefficients of the expansion of
n to zero whenever a solution can be found only in terms of the coefficients of g and h. The outlined solution
scheme specifies a well defined algorithm because we can show that every fixed order of the Taylor expansion can be
treated independently. To prove this claim we need to gain some insight into the left and right hand sides of (1.10)
independently.
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1.1 The homological operator

We refer to the differential operator

Hx = 1d x · AT · ∂x − A (1.12)

as the “homological” operator. The name means “identical” (from the Greek ȯµóς , homos) and “rationale” (λóγoς ,
logos) and reflects the following property

Proposition 1.1. The homological operator (1.12) maps the space of differentiable homogeneous functions into itself

Proof. Let λ ∈ R+ and f a differentiable function homogeneous of degree m. This means that

f(λx) = λm f(x) (1.13)

The dilation operator

Dx = x · ∂x (1.14)

acts on f as

Dxf(x) = mf(x) (1.15)

In words, Dx maps any differentiable homogeneous function into itself. A direct calculation shows that

[Dx ,Hx] := DxHx − HxDx = 0 (1.16)

This means that for any smooth homogeneous f of degree m

DxHxf(x) = mHxf(x) (1.17)

which is equivalent to say that Hxf is homogeneous of degreem and yields therefore the proof of the proposition.

This property of the homological operator is the cornerstone of the normal form method. Namely any individual
order of the Taylor expansion of a vector field is specified by an homogeneous polynomial. In particular we can write
the vector field h in (1.10) as

h(x) =
∞∑
m=2

1

m!

d∑
i=1

eiH
(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x (1.18)

where

• {ei}di=1 is the canonical basis of Rd

e1 =


1
0
...
0

 e2 =


0
1
...
0

 ed =


0
0
...
1

 (1.19)

•
{
H(i)

}d
i=1

is a collection of d coefficients with m indices such that

(H(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x) ≡

 d∑
j1,...,jm=1

H
(i)
j1,...,jm

xj1xj2 . . . xjm

 : Rd 7→ R ∀ i = 1, . . . , d (1.20)
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Thus the m-th order of the Taylor expansion of h can be written as

[h(x)]m =
1

m!

d∑
i=1

eiH
(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x (1.21)

where the right hand side is a linear combinations of vector polynomials of x ∈ Rd homogeneous of degree m:

[h(λx)]m = λm [h(x)]m (1.22)

Example 1.1. Let

x =

[
x1
x2

]
e1 =

[
1
0

]
e2 =

[
0
1

]
(1.23)

and

P (x) =

[
p
(1)
11 x

2
1 + 2 p

(1)
12 x1x2 + p

(1)
22 x

2
2

p
(2)
11 x

2
1 + 2 p

(2)
12 x1x2 + p

(2)
22 x

2
2

]
=

2∑
i=1

ei

(
p
(i)
11x

2
1 + p

(i)
12x1x2 + p

(i)
22x

2
2

)
or equivalently using the notation adopted in (1.18)

P (x) =

2∑
i=1

eiP
(i) : x⊗ x (1.24)

where for i = 1, 2

P(i) =

p(i)11 p
(i)
12

p
(i)
12 p

(i)
22

 ⇒ P
(i)
11 = p

(i)
11 & P

(i)
12 = P

(i)
21 = p

(i)
12 & P

(i)
22 = p

(i)
22 (1.25)

Let Hm(Rd;Rd) the space of d-dimensional vector homogeneous polynomials of degree m of a d-dimensional
variable. Then we have

[h(x)]m ∈ Hm(Rd;Rd) (1.26)

and, since the homological operator maps homogeneous polynomials of degree m into homogeneous polynomials of
degree m, also

Hx[h(x)]m ∈ Hm(Rd;Rd) (1.27)

This observation implies that we can write the left hand side of (1.10) as

Hxh(x) =
∑
m≥2

Hx[h(x)]m (1.28)

where each addend in the series lives in in a differentHm(Rd;Rd).
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1.1.1 Spectral properties of the homological operator

Let us focus the attention on the homological operator Hx when acting on Hm(Rd;Rd) for any fixed m. Then Hx is
a linear operator. Furthermore let us suppose that the matrix A in (1.10) is diagonal:

A =
d∑
i=1

aiei ⊗ ei =


a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
...

0 0 0 . . . ad

 (1.29)

Then we can couch the homological operator into the simpler form

Hx = 1d

d∑
j=1

ajxj∂xj −
d∑
j=1

aj ℘j (1.30)

where ℘j is the projector

℘jei = δijei (1.31)

We can then prove that

Proposition 1.2. The homological operator is diagonal on homogeneous vectors of the form

v(m, i) = ei

d∏
j=1

x
mj

j (1.32)

wherem = [m1, . . . ,md] are integer numbers satisfying the constraint

m =
d∑
i=1

mi (1.33)

where m is the degree of homogeneity of the polynomials inHm(Rd;Rd). Furthermore,

Hxv(m, i) = Λ(m, i)v(m, i) (1.34)

with

Λ(m, i) =
d∑
j=1

mj aj − ai (1.35)

Proof. By direct calculation we see that

1d

d∑
j=1

ajxj∂xjv(m, i) =

d∑
j=1

ajmjv(m, i) (1.36)

and

d∑
j=1

aj℘jv(m, i) = ai v(m, i) (1.37)
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It turns out that it is possible to introduce inHm(Rd;Rd) a suitable scalar product and to show that the homological
operator has a non-empty null-space or kernel if and only if the resonance condition

Λ(m, i) = 0 &
∑
j

mj = m mj ∈ N ∀ j (1.38)

is verified. We refer to the span (i.e. the set of all possible linear combinations) of the eigenvectors of Hx with zero
eigenvalue as the kernel of Hx in Hm(Rd;Rd). We denote this set as KerHHm The mentioned scalar product was
introduced in [2].

1.2 Analysis of the right hand side of the homological equation (1.10)

Let us first set n = 0 into (1.10) or equivalently consider (1.11). Adopting for g the same notation as in (1.18):

g(x) =
∞∑
m=2

1

m!

d∑
i=1

eiG
(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x =

∞∑
m=2

[g(x)]m (1.39)

it follows immediately that

[g(x+ h(x))]m =
d∑
i=1

ei
m!

G(i) :
( m times︷ ︸︸ ︷
x+ hm(x)⊗ · · · ⊗ x+ hm(x)

)
= [g(x)]m+

n∑
i=1

ei
(m− 1)!

G(i) : h(x)⊗
m−1 times︷ ︸︸ ︷
x⊗ · · · ⊗ x+ · · ·+

n∑
i=1

ei
m!

G(i) :

m times︷ ︸︸ ︷
h(x)⊗ h(x)⊗ · · · ⊗ h(x) (1.40)

We now recall that

h(x) = O(‖x‖r) r ≥ 2 (1.41)

which means that

g(x+ h(x))]m = [g(x)]m + o(‖x‖n) (1.42)

In words, all the terms depending upon at least one insertion of h are always higher order in x than [g(x)]m.

1.3 Solution of the homological equation

We are in the position to prove

Proposition 1.3. For any r ∈ N there exists, in a neighborhood of the origin, a polynomial change of variables
induced by the formal diffeomorphism

x = y + h(y) = y +

r∑
k=2

h(y) +O(‖ y ‖r+1) (1.43)

with hk ∈ Hk(Rn;Rn) mapping (1.1) into

ψ̇t = A ·ψt +
r∑

k=2

nk(ψt) +O(‖ ψt ‖r+1) (1.44)

where

nk(x) ∈ KerHHm ∀ k | 2 ≤ k ≤ r (1.45)
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Proof. The proof is constructive and proceeds by induction. Here we present only the main idea. Let us suppose that

g(x) = O(‖x‖p) p ≥ 2 (1.46)

We know that a resonance occur whenever

Λ(m, i) = 0 , m =
d∑
j=1

mj ≥ p (1.47)

The knowledge of m and i specify modulo a proportionality which must be determined by direct calculation the
non-vanishing contributions to n.

• if we retain only leading order terms, (1.10) becomes

Hx [h(x)]p = [g(x)]p − [n(x)]p + o(‖x‖p) (1.48)

We distinguish two sub-cases.

1. if (1.47) does not admit solution for m = p we set n to zero and we look for the unique solution of

Hx [h(x)]p = [g(x)]p (1.49)

2. if (1.47) admits a solution for some (m, i) we choose [n(x)]p such to subtract the corresponding terms
from g and then we look for the unique solution of

Hx [h(x)]p = [g(x)]p − [n(x)]p (1.50)

• Suppose first that we have found a change of variables mapping (1.1) into

ψ̇t = A ·ψt +
r−1∑
k≥2

[n(ψt)]k + [g(ψt)]r +O(‖ ψt ‖r+1) (1.51)

where, as usual [n]k is an homogeneous polynomial of degree k and [g]r is the homogeneous polynomial of
degree r specifying the r-th order of the Taylor expansion of g.

• Observe that a change of variables of the form

x = y + hr(y) (1.52)

with hr = O(‖x‖r) yields

A · [y + hr(y)] +
r−1∑
k=2

nk(y + hr(y))

= A · y + A · hr(y) +

r−1∑
k=2

nk(y) +

r−1∑
k=2

O(‖ x ‖m+k−1) (1.53)

In words: resonant terms identified by solving the homological equation up to order r − 1 in Taylor expansion
are not affected by a change of variables of the form (1.52). This means that we can again restrict the analysis
to the solution of

Hx [h(x)]r = [g(x)]r − [n(x)]r (1.54)

with −[n(x)]r non vanishing only if (1.47) admits solutions at the order r
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2 Normal forms of the anharmonic oscillator

The equations for the anharmonic oscillator in non-dimensional coordinates are

ẋ1 = x2

ẋ2 = −x1 − ε x31 (2.1)

If we adopt the vector notation (1.1) we have

Ax =

[
0 1

−1 0

]
& g(x) = −ε

[
0

x31

]
(2.2)

The eigenvalues of A are a = ±ı.
It is convenient to pass preliminarily to a system of coordinates where the linear part is diagonal. To this end we

set

z = x1 + ı x2 & z̄ = x1 − ı x2 (2.3)

The new equations of motion are

ż = −ı z − ε ı
(
z + z̄

2

)3

˙̄z = ı z̄ + ε ı

(
z + z̄

2

)3

(2.4)

In the basis where A is diagnal we can easily identify the terms associated to resonances. Namely we see that the first
resonances are encountered for

Λ((2, 1), 1) = 0 ⇒ v((2, 1), 1) = e1z
2 z̄ (2.5)

and

Λ((1, 2), 2) = 0 ⇒ v((2, 1), 1) = e2z z̄ (2.6)

Hence we expect that a change of variables[
z
z̄

]
=

[
y
ȳ

]
+

[
h
(1)
30 y

3 + h
(1)
21 y

2ȳ + h
(1)
12 yȳ

2 + h
(1)
03 ȳ

3

h
(2)
30 y

3 + h
(2)
21 y

2ȳ + h
(2)
12 yȳ

2 + h
(1)
03 ȳ

3

]
+ h.o.t. (2.7)

yields

ẏ = −ı y − 3 ε ı

8
y2 ȳ + h.o.t.

˙̄y = ı ȳ +
3 ε ı

8
y ȳ2 + h.o.t. (2.8)

The meaning of these equation is best understood adopting the polar representation of complex coordinates

z = |z| eı θ (2.9)

yields away from the origin

˙|z| = 0 (2.10)
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and

θ̇ = −
(

1 +
3 ε

8
|y|2
)

(2.11)

THe relation uncovers the dependence of the period on the amplitude for non-linear oscillations. In particular

|θ| = 2π (2.12)

implies

T =
2π

1 + 3 ε
8 |y|2

= 2π

(
1− 3 ε

8
|y|2
)

+O(ε2) (2.13)

where |y| is the amplitude of the oscillation.
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