1 Introduction

This notes are meant to provide a conceptual background for the numerical construction of random variables. They can be regarded as a mathematical complement to the article [1] (please follow the hyperlink given in the bibliography). You are strongly recommended to read [1]. The recommended source for numerical implementation of random variables is [3] (or its FORTRAN equivalent), [2] provides and discusses analogous routines in PASCAL.

2 Binary shift map

The binary shift is the map

$$
\sigma:[0,1] \rightarrow[0,1]
$$

such that $x_{n+1}=\sigma\left(x_{n}\right)$ is

$$
x_{n+1}=2 x_{n} \bmod 1 \equiv \begin{cases}2 x_{n} & 0 \leq x_{n}<\frac{1}{2} \tag{2.1}\\ 2 x_{n}-1 & \frac{1}{2} \leq x_{n} \leq 1\end{cases}
$$

Adopting the binary representation for any $x \in[0,1]$

$$
x=\sum_{i=1}^{\infty} a_{i} 2^{-i} \quad \Rightarrow \quad \boldsymbol{a}=\left(a_{1}, a_{2}, \ldots\right)
$$

where

$$
a_{i} \in\{0,1\} \quad \forall i \in \mathbb{N}
$$

we see that

- if $0 \leq x<1 / 2$ then $a_{1}=0$ and

$$
2 \sum_{i=2}^{\infty} a_{i} 2^{-i}=\sum_{i=1}^{\infty} a_{i+1} 2^{-i} \quad \Rightarrow \quad \sigma \circ\left(0, a_{2}, a_{3} \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

- if $1 / 2 \leq x<1$ then $a_{1}=1$ and

$$
2 \sum_{i=1}^{\infty} a_{i} 2^{-i}-1=a_{1}-1+\sum_{i=1}^{\infty} a_{i+1} 2^{-i}=\sum_{i=1}^{\infty} a_{i+1} 2^{-i} \quad \Rightarrow \quad \sigma \circ\left(a_{1}, a_{2}, a_{3} \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

having used the notation

$$
\sigma \circ \boldsymbol{a} \equiv \sigma(\boldsymbol{a})
$$

Thus, (2.1) acts on any initial condition $x \in[0,1] x \sim\left(a_{1}, a_{2}, \ldots\right)$ by removing the first entry and shifting to the left the ensuing ones. There are relevant consequences:

- The sensitive dependence of the iterates of σ on the initial conditions. If two points x and x^{\prime} differ only after their n-th digit a_{n}, i.e. $x=\left(a_{1}, \ldots, a_{n}, a_{n+1}, \ldots\right)$ and $x^{\prime}=\left(a_{1}, \ldots, a_{n}, a_{n+1}^{\prime}, \ldots\right)$ this difference becomes amplified under the action of σ :

$$
\sigma^{n}(x)=\left(a_{n+1}, \ldots\right) \quad \& \quad \sigma^{n}\left(x^{\prime}\right)=\left(a_{n+1}^{\prime}, \ldots\right)
$$

where $\sigma^{2}(x)=\sigma(\sigma(x))$, etc.

- The sequence of iterates $\sigma^{n}(x)$ has the same random properties as successive tosses of a coin. Namely, $\sigma^{n}(x)$ is smaller or larger than $1 / 2$ depending on whether a_{n+1} is zero or one. If we associate to coin tossing a Bernoulli variable

$$
\xi: \Omega \rightarrow\{0,1\} \quad \xi(H)=1
$$

we can always associate to any realization of the sequence of i.i.d. $\left\{\xi_{i}\right\}_{i=1}^{n}\left(\xi_{i} \stackrel{d}{=} \xi\right)$ an binary sequence specifying an $x \in[0,1]$. In other words we have for any $x \in[0,1]$ an isomorphism of the type

$$
x \sim\left\{\begin{array}{lllllll}
(0 & 1 & 0 & 1 & 1 & 0 & \ldots
\end{array}\right)
$$

- All dyadic rational numbers i.e. rational numbers of the form

$$
\frac{p}{2^{a}} \quad p, a, \in \mathbb{N}
$$

have a terminating binary numeral. This means that the binary representation has a finite number of terms after the radix point e.g.:

$$
\begin{equation*}
\frac{3}{2^{5}}=0.00011 \tag{2.2}
\end{equation*}
$$

This means that the set of dyadic rational numbers is the basin of attraction of the fixed point in zero.

- Other rational numbers have binary representation, but instead of terminating, they recur, with a finite sequence of digits repeating indefinitely (i.e. they comprise a periodic part which may be preceded by a pre-periodic part):

$$
\frac{13}{36}=0.01 \overline{011100}_{2}
$$

where - denotes the periodic part: they correspond to the set of periodic orbits together with their basin of attraction of the shift map.

- Binary numerals which neither terminate nor recur represent irrational numbers. Since rational are dense on real for any $x \in[0,1]$ and any ε there is at least one point on a periodic orbit (and actually an infinite number of such points) in $[x-\varepsilon, x+\varepsilon]$. This fact has important consequences for numerics. Rational numbers form (and therefore initial conditions for periodic orbits of the binary shift) a countable infinite set with zero Lebesgue measure. Generic initial conditions (i.e. real number on $[0,1]$) are uncountable and have full Lebesgue measure. Non-periodic orbits are hence in principle generic. Not in practice, though, if by that we mean a numerical implementation of the shist map. Computer can work only with finite accuracy numbers: at most they can work with recurring sequences of large period.

Definition 2.1 (Perron-Frobenius operator). Given a one dimensional map

$$
f:[0,1] \rightarrow[0,1]
$$

and a probability density ρ over $[0,1]$, the one step-evolution ρ^{\prime} of ρ with respect to f is governed by the PerronFrobenius operator defined by

$$
\rho^{\prime}(x)=\mathcal{F}[\rho](x):=\int_{0}^{1} d y \delta(x-f \circ y) \rho(y)
$$

The definition of the Perron-Frobenius operator, allows us to associate to any map

$$
x_{n+1}=f\left(x_{n}\right)
$$

an evolution law for densities

$$
\rho_{n+1}(x)=\int_{0}^{1} d y \delta(x-f \circ y) \rho_{n}(y)
$$

In particular we have
Definition 2.2 (Stationary density). A density is stationary with respect to f if

$$
\rho(x)=\int_{0}^{1} d y \delta(x-\sigma \circ y) \rho(y)
$$

For the shift map we have
Proposition 2.1 (Invariant density). The uniform distribution $\rho(x)=1$ is the unque invariant density of the shift map on the space of smooth densities

Proof. Using the definition of stationary density and the expression of shift map we have

$$
\rho(x)=\int_{0}^{\frac{1}{2}} d y \delta(x-2 y) \rho(y)+\int_{\frac{1}{2}}^{1} d y \delta(x-2 y+1) \rho(y)
$$

For any $x \in[0,1]$ the integral gives

$$
\rho(x)=\frac{1}{2} \rho\left(\frac{x}{2}\right)+\frac{1}{2} \rho\left(\frac{x+1}{2}\right)=\frac{1}{2} \sum_{i=0}^{1} \rho\left(\frac{x+i}{2}\right)
$$

The equality is readily satisfied by setting $\rho(x)=1$. The solution is also unique. We can establish using the the expression of a generic intial density after n-iterations. In order to determine such an expression we can proceed by induction

- After two steps

$$
\begin{equation*}
\rho^{(2)}(x)=\frac{1}{2}\left(\frac{1}{2} \rho\left(\frac{x}{4}\right)+\frac{1}{2} \rho\left(\frac{x+1}{4}\right)\right)+\frac{1}{2}\left(\frac{1}{2} \rho\left(\frac{\frac{x}{2}+1}{2}\right)+\frac{1}{2} \rho\left(\frac{\frac{x+1}{2}+1}{2}\right)\right)=\frac{1}{4} \sum_{i=0}^{3} \rho\left(\frac{x+i}{4}\right) \tag{2.3}
\end{equation*}
$$

- We may infer that after n steps

$$
\begin{equation*}
\rho^{(n)}(x)=\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1} \rho\left(\frac{x+i}{2^{n}}\right) \tag{2.4}
\end{equation*}
$$

- the inference implies that

$$
\begin{equation*}
\rho^{(n+1)}(x)=\frac{1}{2^{n+1}} \sum_{i=0}^{2^{n}-1} \rho\left(\frac{x+i}{2^{n+1}}\right)+\frac{1}{2^{n+1}} \sum_{i=0}^{2^{n}-1} \rho\left(\frac{\frac{x+i}{2^{n}}+1}{2}\right) \tag{2.5}
\end{equation*}
$$

The first sum ranges from $x / 2^{n+1}$ to $\left(x+2^{n}-1\right) / 2^{n+1}$. The second from $\left(x+2^{n}\right) / 2^{n+1}$ to $\left(x+2^{n+1}-1\right) / 2^{n+1}$. Therefore we can re-write the (2.5) as

$$
\begin{equation*}
\rho^{(n+1)}(x)=\frac{1}{2^{n+1}} \sum_{i=0}^{2^{n+1}-1} \rho\left(\frac{x+i}{2^{n+1}}\right) \tag{2.6}
\end{equation*}
$$

which proves the that the inference is correct for any n.

In the limit $n \uparrow \infty$ the latter converges to

$$
\lim _{n \uparrow \infty} \rho_{n}(x)=\lim _{n \uparrow \infty} \frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1} \rho\left(\frac{x+i}{2^{n}}\right)=\int_{0}^{1} d y \rho(y)=1
$$

References

[1] J. Ford. How random is a coin toss? Physics Today, 36:4047, 1983.
[2] P. E. Kloeden, E. Platen, and H. Schurz. Numerical solution of SDE through computer experiments. Universitext. Springer, 1994.
[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C: the art of scientific computing. Cambridge University Press, 1999.

