
1 Introduction

This notes are meant to provide a conceptual background for the numerical construction of random variables. They can
be regarded as a mathematical complement to the article [1] (please follow the hyperlink given in the bibliography).
You are strongly recommended to read [1]. The recommended source for numerical implementation of random
variables is [3] (or its FORTRAN equivalent), [2] provides and discusses analogous routines in PASCAL.

2 Binary shift map

The binary shift is the map

σ : [0, 1]→ [0, 1]

such that xn+1 = σ(xn) is

xn+1 = 2xn mod 1 ≡

{
2xn 0 ≤ xn < 1

2

2xn − 1 1
2 ≤ xn ≤ 1

(2.1)

Adopting the binary representation for any x ∈ [0, 1]

x =

∞∑
i=1

ai2
−i ⇒ a = (a1, a2, . . . )

where

ai ∈ {0, 1} ∀ i ∈ N

we see that

• if 0 ≤ x < 1/2 then a1 = 0 and

2
∞∑
i=2

ai2
−i =

∞∑
i=1

ai+12
−i ⇒ σ ◦ (0, a2, a3 . . . ) = (a2, a3, . . . )

• if 1/2 ≤ x < 1 then a1 = 1 and

2
∞∑
i=1

ai2
−i − 1 = a1 − 1 +

∞∑
i=1

ai+12
−i =

∞∑
i=1

ai+12
−i ⇒ σ ◦ (a1, a2, a3 . . . ) = (a2, a3, . . . )

having used the notation

σ ◦ a ≡ σ(a)

Thus, (2.1) acts on any initial condition x ∈ [0, 1] x ∼ (a1, a2, . . . ) by removing the first entry and shifting to the
left the ensuing ones. There are relevant consequences:

• The sensitive dependence of the iterates of σ on the initial conditions. If two points x and x′ differ only after
their n-th digit an , i.e. x = (a1, . . . , an, an+1, . . . ) and x′ = (a1, . . . , an, a

′
n+1, . . . ) this difference becomes

amplified under the action of σ:

σn(x) = (an+1, . . . ) & σn(x′) = (a′n+1, . . . )

where σ2(x) = σ(σ(x)), etc.
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• The sequence of iterates σn(x) has the same random properties as successive tosses of a coin. Namely, σn(x) is
smaller or larger than 1/2 depending on whether an+1 is zero or one. If we associate to coin tossing a Bernoulli
variable

ξ : Ω→ {0 , 1} ξ(H) = 1

we can always associate to any realization of the sequence of i.i.d. {ξi}ni=1 (ξi
d
= ξ) an binary sequence

specifying an x ∈ [0, 1]. In other words we have for any x ∈ [0, 1] an isomorphism of the type

x ∼
{

(0 1 0 1 1 0 . . . )
(C H C H H C . . . )

• All dyadic rational numbers i.e. rational numbers of the form

p

2a
p , a ,∈ N

have a terminating binary numeral. This means that the binary representation has a finite number of terms after
the radix point e.g.:

3

25
= 0.00011 (2.2)

This means that the set of dyadic rational numbers is the basin of attraction of the fixed point in zero.

• Other rational numbers have binary representation, but instead of terminating, they recur, with a finite sequence
of digits repeating indefinitely (i.e. they comprise a periodic part which may be preceded by a pre-periodic
part):

13

36
= 0.010111002

where •̄ denotes the periodic part: they correspond to the set of periodic orbits together with their basin of
attraction of the shift map.

• Binary numerals which neither terminate nor recur represent irrational numbers. Since rational are dense on
real for any x ∈ [0, 1] and any ε there is at least one point on a periodic orbit (and actually an infinite number of
such points) in [x− ε, x+ ε]. This fact has important consequences for numerics. Rational numbers form (and
therefore initial conditions for periodic orbits of the binary shift) a countable infinite set with zero Lebesgue
measure. Generic initial conditions (i.e. real number on [0, 1]) are uncountable and have full Lebesgue measure.
Non-periodic orbits are hence in principle generic. Not in practice, though, if by that we mean a numerical
implementation of the shist map. Computer can work only with finite accuracy numbers: at most they can work
with recurring sequences of large period.

Definition 2.1 (Perron-Frobenius operator). Given a one dimensional map

f : [0, 1]→ [0, 1]

and a probability density ρ over [0, 1], the one step-evolution ρ′ of ρ with respect to f is governed by the Perron-
Frobenius operator defined by

ρ′(x) = F [ρ](x) :=

∫ 1

0
dy δ(x− f ◦ y) ρ(y)
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The definition of the Perron-Frobenius operator, allows us to associate to any map

xn+1 = f(xn)

an evolution law for densities

ρn+1(x) =

∫ 1

0
dy δ(x− f ◦ y) ρn(y)

In particular we have

Definition 2.2 (Stationary density). A density is stationary with respect to f if

ρ(x) =

∫ 1

0
dy δ(x− σ ◦ y)ρ(y)

For the shift map we have

Proposition 2.1 (Invariant density). The uniform distribution ρ(x) = 1 is the unque invariant density of the shift map
on the space of smooth densities

Proof. Using the definition of stationary density and the expression of shift map we have

ρ(x) =

∫ 1
2

0
dy δ(x− 2 y) ρ(y) +

∫ 1

1
2

dy δ(x− 2 y + 1) ρ(y)

For any x ∈ [0, 1] the integral gives

ρ(x) =
1

2
ρ
(x

2

)
+

1

2
ρ

(
x+ 1

2

)
=

1

2

1∑
i=0

ρ

(
x+ i

2

)
The equality is readily satisfied by setting ρ(x) = 1. The solution is also unique. We can establish using the the
expression of a generic intial density after n-iterations. In order to determine such an expression we can proceed by
induction

• After two steps

ρ(2)(x) =
1

2

(
1

2
ρ
(x

4

)
+

1

2
ρ

(
x+ 1

4

))
+

1

2

(
1

2
ρ

( x
2 + 1

2

)
+

1

2
ρ

(
x+1
2 + 1

2

))
=

1

4

3∑
i=0

ρ

(
x+ i

4

)
(2.3)

• We may infer that after n steps

ρ(n)(x) =
1

2n

2n−1∑
i=0

ρ

(
x+ i

2n

)
(2.4)

• the inference implies that

ρ(n+1)(x) =
1

2n+1

2n−1∑
i=0

ρ

(
x+ i

2n+1

)
+

1

2n+1

2n−1∑
i=0

ρ

(
x+i
2n + 1

2

)
(2.5)

The first sum ranges from x/2n+1 to (x+2n−1)/2n+1. The second from (x+2n)/2n+1 to (x+2n+1−1)/2n+1.
Therefore we can re-write the (2.5) as

ρ(n+1)(x) =
1

2n+1

2n+1−1∑
i=0

ρ

(
x+ i

2n+1

)
(2.6)

which proves the that the inference is correct for any n.
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In the limit n ↑ ∞ the latter converges to

lim
n↑∞

ρn(x) = lim
n↑∞

1

2n

2n−1∑
i=0

ρ

(
x+ i

2n

)
=

∫ 1

0
dy ρ(y) = 1
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