1 Introduction

This notes are meant to provide a conceptual background for the numerical construction of random variables. They can
be regarded as a mathematical complement to the article [1] (please follow the hyperlink given in the bibliography).
You are strongly recommended to read [1]. The recommended source for numerical implementation of random
variables is [3] (or its FORTRAN equivalent), [2] provides and discusses analogous routines in PASCAL.

2 Binary shift map

The binary shift is the map

o:[0,1] — [0, 1]

such that x,,11 = o () is

2z, 0 < x, < %
Tpt1 =2z, mod 1 = 2.1)
2xy, — 1 F <, <1
Adopting the binary representation for any x € [0, 1]
e .
:E:Zaﬂ_’ = a=(ay,az,...)
i=1
where
a; € {0,1} Vie N
we see that
e if0 <x < 1/2thena; =0and
QZCLZ'Q_Z:ZCLZ'+12_1 = O'O(O,ag,ag...):(ag,ag,...)
i=2 i=1
o if1/2<x <1lthena; =1and
2Zaﬂ’z—l:al—l—&—ZaiHQ*’:ZaiHQ” = O'O(al,ag,ag...):(ag,ag,...)
i=1 i=1 i=1

having used the notation
coa=o(a)

Thus, (2.1) acts on any initial condition z € [0,1] x ~ (a1, az,...) by removing the first entry and shifting to the
left the ensuing ones. There are relevant consequences:

e The sensitive dependence of the iterates of o on the initial conditions. If two points x and 2’ differ only after

their n-th digit a,, ,ie. = (a1,...,an,ans1,...) and 2’ = (ay,...,an,al,,...) this difference becomes
amplified under the action of o:

o"(x) = (ans1,---) & o"(2') = (an4q,-..)

where 0%(z) = o(o(z)), etc.



e The sequence of iterates o™ (x) has the same random properties as successive tosses of a coin. Namely, o™ () is
smaller or larger than 1/2 depending on whether a,, 11 is zero or one. If we associate to coin tossing a Bernoulli
variable

£:0-{0,1} £(H) =1

we can always associate to any realization of the sequence of i.i.d. {&}i; (& < ) an binary sequence
specifying an = € [0, 1]. In other words we have for any = € [0, 1] an isomorphism of the type

© 1 0 1 1 0 ..)
xN{(C’HCHHC...)

o All dyadic rational numbers i.e. rational numbers of the form

p
@ p,a,c N
have a terminating binary numeral. This means that the binary representation has a finite number of terms after

the radix point e.g.:
3
2% = 0.00011 (2.2)

This means that the set of dyadic rational numbers is the basin of attraction of the fixed point in zero.

e Other rational numbers have binary representation, but instead of terminating, they recur, with a finite sequence
of digits repeating indefinitely (i.e. they comprise a periodic part which may be preceded by a pre-periodic

part):

13 S
—2 — (.01011100
36 2

where ® denotes the periodic part: they correspond to the set of periodic orbits together with their basin of
attraction of the shift map.

e Binary numerals which neither terminate nor recur represent irrational numbers. Since rational are dense on
real for any x € [0, 1] and any ¢ there is at least one point on a periodic orbit (and actually an infinite number of
such points) in [z — &, z + ¢]. This fact has important consequences for numerics. Rational numbers form (and
therefore initial conditions for periodic orbits of the binary shift) a countable infinite set with zero Lebesgue
measure. Generic initial conditions (i.e. real number on [0, 1]) are uncountable and have full Lebesgue measure.
Non-periodic orbits are hence in principle generic. Not in practice, though, if by that we mean a numerical
implementation of the shist map. Computer can work only with finite accuracy numbers: at most they can work
with recurring sequences of large period.

Definition 2.1 (Perron-Frobenius operator). Given a one dimensional map
f:10,1] = [0, 1]

and a probability density p over [0, 1], the one step-evolution p’ of p with respect to f is governed by the Perron-
Frobenius operator defined by

1
§(z) = Flol(x) = /0 dy§(x — f o y) ply)



The definition of the Perron-Frobenius operator, allows us to associate to any map

Tnt+l1 = f(xn)

an evolution law for densities

1
pri1(z) = / dy6(z — foy) pn(y)
0
In particular we have

Definition 2.2 (Stationary density). A density is stationary with respect to f if

1
plr) = / dyd(z — o oy)p(y)
0
For the shift map we have

Proposition 2.1 ( ). The uniform distribution p(x) = 1 is the unque invariant density of the shift map
on the space of smooth densities

Proof. Using the definition of stationary density and the expression of shift map we have

1 1
p(x)—/ dw(w—zy)p(yw/l dy§(x — 2y + 1) ply)

0 2

For any € [0, 1] the integral gives

1 ,
1 rx 1 [fz+1 1 T+
P("”)—gp(z)*ﬁ’( 2 > —2§P< > )
The equality is readily satisfied by setting p(z) = 1. The solution is also unique. We can establish using the the

expression of a generic intial density after n-iterations. In order to determine such an expression we can proceed by
induction

o After two steps

T T 3 .
Oy = (L) e L () L (L (2 L () ) J e (et
P (x)_2(2p(4>+2p< i )) e\ \ T ) | T =720 )@

o We may infer that after n steps

1% (ot
P (z) = 3 Z p< o ) (2.4)
o the inference implies that

2n—1 . 2" -1 T+

1 x4+ 1 S+ 1

+1 _ 2
P )(x)—2n+1Zp<2n+1>+2n+12p< 5 ) (2.5)

=0 i=0

The first sum ranges from /2" to (z4-2"—1)/2"*!. The second from (z+2") /2" to (z4-2"+1 —1) /2" +1,
Therefore we can re-write the (2.5) as

antl_q

" 1 r+1
p( +1)(.7}) = 2n+1 Z P (2’VL-H> (26)

=0

which proves the that the inference is correct for any n.



In the limit n 1 oo the latter converges to

1% (ot 1
lim p,(z) = lim — :/ d =1
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