INTRODUCTION TO DYNAMICAL SYSTEMS AND CHAOTIC SYSTEMS

EXERCISE 2

P. MURATORE-GINANNESCHI, K. SCHWIEGER

1. Potentials and Bifurcations

For each of the following examples, sketch the potentials for different values of r. Be sure to show all qualitatively different cases, including bifurcation values.
(1) $\dot{x}=r-x^{2}$,
(2) $\dot{x}=r x-x^{2}$,
(3) $\dot{x}=r x+x^{3}-x^{5}$,

2. Type of a Bifurcation

Consider the following systems with a parameter r. For each system determine the crticial point and qualitatively sketch the different vector fields that occur as r is varied. Sketch the bifurcation diagram (fixed points versus r.
(1) $\dot{x}=1+r x+x^{2}$,
(2) $\dot{x}=r+\frac{1}{2} x-\frac{x}{1+x}$,
(3) $\dot{x}=r x+x^{2}$,
(4) $\dot{x}=x-r x(1-x)$,
(5) $\dot{x}=x\left(r-e^{x}\right)$,
(6) $\dot{x}=x+\tanh (r x)$,
(7) $\dot{x}=r x-\frac{x}{1+x}$,
(8) $\dot{x}=r x-\frac{x}{1+x^{2}}$,
(9) $\dot{x}=r x+\frac{x^{3}}{1+x^{2}}$.

3. A More Interesting Example

Consider the system $\dot{x}=r x-\sin x$.
(1) Sketch the bifurcation diagram without classifying the bifurcations.
(2) Classify all bifurcations that occur for $r>0$.
(3) For $0<r \ll 1$, find an approximate formula for values of r at which bifurcations occur.
(4) Describe the stability of the fixpoints that occur for $r<0$.

4. Logistic Equation Revised, Fishery

During the lecture you have seen the logistic equation $\dot{N}=r N(1-N / K)$ with constants $r, K>0$ as a simple model of population grows.
(1) Recall the relation of the constants r, K and the population groth model. What do r and K describe?
(2) If the population is harvested (fishery) with a constant rate, we may instead consider the equation $\dot{N}=r N(1-N / K)-H$ with an additional constant $H>0$. Show that by a suitable transformation of variables the system is equivalent to

$$
\begin{equation*}
\dot{x}=x(1-x)-h . \tag{1}
\end{equation*}
$$

Determine and classify the bifurcations of equation (1).
(3) Why is this model not satisfying or what effect of the equation does not match reality?

[^0](4) A more refined model would be to consider the equation
\[

$$
\begin{equation*}
\operatorname{det} N=r N\left(1-\frac{N}{K}\right)-\frac{H N}{A+N} \tag{2}
\end{equation*}
$$

\]

with constants $A, H>0$. How does the "harvest term" $\frac{H N}{A+N}$ behave in dependence on N and why is this a better model?
(5) Show that by a suitable change of variables the system (2) can be reduced to

$$
\dot{x}=x(1-x)-\frac{h x}{a+x} .
$$

with $a, h>0$. Find and classify the fixed points for each choice of a and h. What kind of stability do you find in the different regions?

[^0]: Date: 18th Sep. 2015.

