Introduction to Continuous Logic Department of Mathematics and Statistics, University of Helsinki Fall 2015 Exercise 5

1. Assume $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_2$, $\mathcal{M}_0 \preccurlyeq \mathcal{M}_2$ and $\mathcal{M}_1 \preccurlyeq \mathcal{M}_2$. Show that $\mathcal{M}_0 \preccurlyeq \mathcal{M}_1$.

2. Show that if \mathcal{M} is κ -saturated, then density $(\mathcal{M}) \geq \kappa$ or \mathcal{M} is compact.

3. A model \mathcal{M} is *saturated*, if it is density(\mathcal{M})-saturated. Show that if CH holds (i.e., $2^{\aleph_0} = \aleph_1$) then any separable model of a countable vocabulary L can be extended to a saturated model of density \aleph_1 .

- 4. (1) Assume L is countable and \mathcal{M} is an L-structure, $\kappa \geq \aleph_0, A \subset M, |A| < \kappa$. Denote by \mathcal{M}_A the L(A)-structure one gets by giving the new constant symbols their natural interpretation. Show that if \mathcal{M} is κ -saturated, then so is \mathcal{M}_A . (Note: in continuous model theory there is also a notion of *approximate saturation* for which the claim is not true.)
 - (2) Show that \mathcal{M} is κ -saturated if and only if it realizes all types in $S_1(T_A)$ for $A \subset M$ with $|A| < \kappa$.
- 5. Prove remark 8.2 of the material.