Introduction to Continuous Logic Department of Mathematics and Statistics, University of Helsinki Fall 2015 Exercise 1

1. Suppose M, M', M'' are metric spaces and $f, f_n : M \to M'$ and $f', f'_n : M' \to M''$ are functions $(n < \omega)$. Suppose $(f_n)_{n < \omega}$ converges uniformly to f on M and $(f'_n)_{n < \omega}$ converges uniformly to f' on M'. Show that $(f'_n \circ f_n)_{n < \omega}$ converges uniformly to $f' \circ f$ on M.

2. Prove the Stone-Weierstrass theorem: Let X be a compact Hausdorff space containing at least two points, let $I \subset \mathbb{R}$ be an interval and consider $\mathcal{A} = C(X, I)$ the lattice of continuous functions from X to I, with the uniform convergence topology. If $\mathcal{B} \subset \mathcal{A}$ is a sublatice such that for every distinct $x, y \in X$ and every $a, b \in I$ and $\varepsilon > 0$, there is $f \in \mathcal{B}$ such that $|f(x) - a| < \varepsilon$ and $|f(y) - b| < \varepsilon$, then \mathcal{B} is dense in \mathcal{A} .

Hint: Given $f \in \mathcal{A}$ and $\varepsilon > 0$, for each pair of points $x, y \in X$, the assumption gives $g_{x,y} \in \mathcal{B}$ approximating f at x and y. Let $V_{x,y} = \{z \in X : f(z) - \varepsilon < g_{x,y}(z)\}$. This is an open neighbourhood of y and we can cover X by $\{V_{x,y} : y \in X\}$ and use compactness to define a g_x such that $f(z) - \varepsilon < g_x(z)$ for all $z \in X$. Then similarly let x vary to take care of the other direction.

3. In classical logic if '=' isn't real identity, the identity axioms (see e.g. the material for the course Logic I) are exactly what is needed to be able to define a model on the equivalence classes of =. Analogously, if in a metric structure d is not a metric but only a pseudometric (nonnegativity, symmetry and triangle inequality holds for d, but there may be $x \neq y$ with d(x, y) = 0) one can define a metric space by considering the equivalence classes of the equivalence relation d(x, y) = 0. Show that the uniform continuity demands on functions and predicates guarantee that the symbols from the signature have well-defined interpretations in the quotient structure. (See the first appendix and the section on prestructures in the material for details.)

4. Prove that for each *L*-term $t(x_1, \ldots, x_n)$ and each *L*-formula $\varphi(x_1, \ldots, x_n)$ there are functions Δ_t and Δ_{φ} form (0, 1] to (0, 1] such that for any *L*-prestructure \mathcal{M} , Δ_t is a modulus of uniform continuity for the function $t^{\mathcal{M}} : \mathcal{M}^n \to \mathcal{M}$ and Δ_{φ} is a modulus of uniform continuity for the predicate $\varphi^{\mathcal{M}} : \mathcal{M}^n \to [0, 1]$.

5. Show that a quotient *L*-prestructure \mathcal{M} can be extended to an *L*-structure \mathcal{N} , i.e., that the predicates and functions of \mathcal{M} can be extended to the completion of the metric space (M, d) such that the extensions have the same moduli of uniform continuity as the original functions.