HARMONIC ANALYSIS AND SQUARE FUNCTIONS: HINTS FOR THE EXERCISE SET 2

(5) Recall that sets can be approximated in measure by open sets (given $\epsilon>0$ there exists open set $U \supset A$ so that $\mu(U) \leq \mu(A)+\epsilon$), and choose appropriate maximal dyadic cubes.
(6) Decompose the summation over the dyadic cubes as follows

$$
\sum_{j \in \mathbb{Z}} \sum_{\substack{Q \in \mathcal{D}_{0} \\ 2^{j}<\left|\langle f\rangle_{Q}^{\mu}\right| \leq 2^{j+1}}}
$$

for each fixed j consider appropriate maximal dyadic cubes, and try to use the assumption

$$
\frac{1}{\mu(R)} \int_{R}\left[\sum_{\substack{Q \in \mathcal{D}_{0} \\ Q \subset R}}\left|A_{Q}(x)\right|^{2}\right]^{p / 2} d \mu(x) \leq\left[\operatorname{Car}_{p}\left(\left(A_{Q}\right)_{Q \in \mathcal{D}_{0}}\right)\right]^{p} \mu(R)
$$

with R being one of the chosen maximal dyadic cubes. Recall also that the dyadic maximal operator is $L^{p}(\mu)$ bounded.
(7) Fix $P_{0} \in \mathcal{D}_{0}$, where you want to show the claim. Choose maximal cubes $R \in \mathcal{D}_{0}$ so that $R \subset P_{0}$ and

$$
\left|\sum_{\substack{Q \in \mathcal{D}_{0} \\ R \subseteq Q \subset P_{0}}} \varphi_{Q}(x)\right|>1, \quad x \in R .
$$

The left-hand side is constant on R so this makes sense. Denote these cubes \mathcal{R}_{1} and set $S_{1}=\bigcup_{R \in \mathcal{R}_{1}} R$. What properties do you have? Keep iterating this construction.

