HARMONIC ANALYSIS AND SQUARE FUNCTIONS: EXERCISE SET 3

Return your written solutions preferably directly to Emil Vuorinen (office C435, emil.vuorinen@helsinki.fi). You can also return them during the lectures. Deadline for the third set is Friday, December 4. Ask for hints!
(1) Check that the martingales (defined in the p .30 of the lecture notes) $\Delta_{P} f$, $P \in \mathcal{D}^{\mathrm{tr}}$, satisfy $\int_{P} \Delta_{P} f d \sigma=0$.
(2) Let $\left(s_{t}\right)_{t>0}$ be an m-LP-family and V be the corresponding vertical square function. Let $Q \subset \mathbb{R}^{n}$ be a cube and σ be a finite Radon measure so that $\operatorname{spt} \sigma \subset Q$. Suppose that there is a Borel set $E \subset \mathbb{R}^{n}$ so that $\sigma(E)>0$ and for every $x \in E$ there holds that

$$
V_{\sigma, Q} 1_{Q}(x)<\infty \quad \text { and } \quad \sup _{r>0} \frac{\sigma(B(x, r))}{r^{m}}<\infty
$$

Show that there exists $G \subset E$ and $C<\infty$ so that $\sigma(G)>0$ and

$$
\left\|1_{G} V_{\sigma, Q} f\right\|_{L^{2}(\sigma)} \leq C\|f\|_{L^{2}(\sigma)}
$$

for every $f \in L^{2}(\sigma)$.
(3) Let $\left(s_{t}\right)_{t>0}$ be an m-LP-family, $Q \subset \mathbb{R}^{n}$ be a cube and μ be a Radon measure in \mathbb{R}^{n}. Show that for every $f \in L^{2}(\mu)$ for which spt $f \subset Q$ we have

$$
\left\|x \mapsto 1_{Q}(x)\left(\int_{\ell(Q)}^{\infty}\left|\theta_{t}^{\mu} f(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L^{2}(\mu)} \leq C \frac{\mu(Q)}{\ell(Q)^{m}}\|f\|_{L^{2}(\mu)} .
$$

(4) Let \mathcal{D}_{1} and \mathcal{D}_{2} be two dyadic systems in \mathbb{R}^{n}. Let $\gamma \in(0,1)$ and $r \geq 1$. Like in the lecture notes we say that $Q \in \mathcal{D}_{1}$ is (γ, r) - \mathcal{D}_{2}-good (or just \mathcal{D}_{2}-good), if $d(Q, \partial R)>\ell(Q)^{\gamma} \ell(R)^{1-\gamma}$ for every $R \in \mathcal{D}_{2}$ satisfying that $\ell(R) \geq 2^{r} \ell(Q)$. We denote these cubes here by $\mathcal{D}_{1, \text { good }}$.

Let μ be a radon measure in \mathbb{R}^{n} and $M>1$. We say that $a \in \mathrm{BMO}_{M}^{2}(\mu)$ if a is locally integrable and there is constant $C<\infty$ so that

$$
\left(\int_{L}\left|a-\langle a\rangle_{L}\right|^{2} d \mu\right)^{1 / 2} \leq C \mu(M L)^{1 / 2}
$$

for every cube $L \subset \mathbb{R}^{n}$. Here

$$
\langle a\rangle_{L}=\langle a\rangle_{L}^{\mu}=\frac{1}{\mu(L)} \int_{L} a d \mu
$$

The best constant C is denoted by $\|a\|_{\mathrm{BMO}_{M}^{2}(\mu)}$.

Recall also the definition of the standard martingales from the lecture notes

$$
D_{Q} a=\sum_{Q^{\prime} \in \operatorname{ch}(Q)}\left[\langle a\rangle_{Q^{\prime}}-\langle a\rangle_{Q}\right] 1_{Q^{\prime}}, \quad Q \in \mathcal{D}_{1} .
$$

We define the operator

$$
\Pi_{a} f=\sum_{R \in \mathcal{D}_{2}} \sum_{\substack{Q \in \mathcal{D}_{1, \text { good }} \\ Q \subset R \\ \ell(Q)=2^{-r} \ell(R)}}\langle f\rangle_{R} D_{Q} a .
$$

Prove that given M, γ and a large enough r we have that

$$
\left\|\Pi_{a} f\right\|_{L^{2}(\mu)} \leq C\|a\|_{\mathrm{BMO}_{M}^{2}(\mu)}\|f\|_{L^{2}(\mu)}, \quad f \in L^{2}(\mu) .
$$

(5) Let μ be a measure of order m in \mathbb{R}^{n} and $1 \leq p<\infty$. Let $Q \subset \mathbb{R}^{n}$ be a cube with t-small boundary. Prove that

$$
\int_{Q}\left(\int_{2 Q \backslash Q} \frac{d \mu(y)}{|x-y|^{m}}\right)^{p} d \mu(x) \leq C t \mu(2 Q) .
$$

