
EXERCISE SET 2, SUGGESTIONS FOR SOLUTIONS

EMIL VUORINEN

Any comments about the exercises or solutions are warmly welcomed!

Exercise 1. Here we have an arbitrary Radon measure µ and a cube in Rn. The claim is
that for any s > 1 there holds∫

Q
|f |dµ ≤ s

s− 1
µ(Q)1−

1
s ‖f‖Ls,∞(µ).

The distribution formula relates the integral of f over Q to the weak type norms. Indeed,
for any A > 0 we have ∫

Q
|f |dµ =

∫ ∞
0

µ(Q ∩ {|f | > λ})dλ

≤
∫ A

0
µ(Q)dλ+

∫ ∞
A
‖f‖sLs,∞(µ)λ

−sdλ

= Aµ(Q) +
1

s− 1

‖f‖sLs,∞(µ)

As−1
.

The minimum of the last quantity occurs when A =
‖f‖Ls,∞(µ)

µ(Q)
1
s

, and substituting this into

above gives the claim.

Exercise 2. Again µ is a Radon measure on Rn, and we consider the maximal function

Mµ,pf(x) :=
(
Mµ(|f |p)(x)

) 1
p , p ∈ (1,∞),

where Mµ is the usual centred Hardy-Littlewood maximal function.
Fix some p ∈ (1,∞). For any function g and any s, t > 0 it holds that ‖|g|t‖sLs,∞(µ) =

‖g‖tsLts,∞(µ). Combining this with the fact that the maximal function is bounded from L1(µ)

into L1,∞(µ), we have by Exercise 1 that

1

µ(Q)

∫
Q
Mµ,pf(x)dµ(x) .

1

µ(Q)
1
p

‖Mµ,pf‖Lp,∞(µ)

=
1

µ(Q)
1
p

‖Mµ(|f |p)‖
1
p

L1,∞(µ)
.

1

µ(Q)
1
p

‖|f |p‖
1
p

L1(µ)
,

which is what we wanted to prove.
1
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Exercise 3. Let µ be a measure of order m in Rn. Assume Q ⊂ Rn is a cube and let R be
the smallest (6, 6m+1)-doubling cube of the form 6kQ, k = 0, 1, 2, 3, . . . Claim is that∫

R\Q

dµ(x)

|x− cQ|m
. 1.

Write R = 6NQ for some N . Because 6m+1 > 6m we know by Exercise 4 in the previ-
ous set that such a cubeR exists. The point is that none of the cubesQ, 6Q, 62Q, . . . , 6N−1Q
is (6, 6m+1)-doubling, so the measure of the cubes 6kQ grows fast enough that the inte-
gral over 6NQ \ 6N−1Q dominates the integral over 6N−1Q \ Q. And the integral over
6NQ \ 6N−1Q is bounded by some absolute constant, because µ is of order m.

Indeed, for any k = 0, 1, 2 . . . , N , we have µ(6kQ) ≤ 6−(m+1)(N−k)µ(R). Using this
and dividing the integration area into annuli 6Q \Q, 62Q \ 6Q, . . . , we get∫

R\Q

dµ(x)

|x− cQ|m
.

N∑
k=1

µ(6kQ)

(6kl(Q))m

.
N∑
k=0

6−(m+1)(N−k)µ(R)

(6kl(Q))m
=

N∑
k=0

6k6−(m+1)N µ(R)

l(Q)m

∼ µ(R)

(6N l(Q))m
. 1,

since µ is of order m.

Exercise 4. We prove a claim that was made in the lecture notes during considerations
related to weak (1, 1) boundedness of square functions. With the same notation as there we
show that for all x ∈ Rn \ 2Qi we have

Vνwi(x) .
|ν|(Qi)
|x− cQi |m

.

Fix some x ∈ Rn \ 2Qi. Then for all y ∈ Qi we have |x− y| ∼ |x− cQi | and thus

|θt(wiν)| .
∫
Qi

tαwi(y)d|ν|(y)

(t+ |x− y|)m+α
∼ tα|ν|(Qi)

(t+ |x− cQi |)m+α
,

where we used also that wi(y) ∼ 1 for all y ∈ Qi. Hence

Vνwi(x)2 .
∫ ∞
0

t2α|ν|(Qi)2

(t+ |x− cQi |)2(m+α)

dt

t

≤
∫ |x−cQi |
0

t2α−1
|ν|(Qi)2

|x− cQi |2(m+α)
dt+

∫ ∞
|x−cQi |

|ν|(Qi)2

t2m+1
dt

∼ |ν|(Qi)2

|x− cQi |2m
.

Exercise 5. We have two Radon measure µ and σ and the standard dyadic lattice D0 on
Rn. Assume that A ⊂ Rn is a Borel set such that for some λ ≥ 0 we have

(0.1) D(σ, µ, x) := lim inf
k→∞

σ(Rk(x))

µ(Rk(x))
≤ λ
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for all x ∈ A, where Rk(x) is the unique cube in Dk0 that contains x. Then the claim is that
σ(A) ≤ λµ(A).

We can clearly assume that µ(A) < ∞. Let ε > 0 be arbitrary. Because µ is a Radon
measure there exists an open set U ⊃ A such that µ(U) ≤ µ(A) + ε. Because of (0.1) and
the fact that U is open, for every x ∈ A there exists a cube R ∈ D0 such that l(R) ≤ 1,
R ⊂ U and

σ(R) ≤ λ(1 + ε)µ(R).

So if we consider the collection

D := {R ∈ D0 : R ⊂ U, l(R) ≤ 1, σ(R) ≤ λ(1 + ε)µ(R)}

we see that A ⊂
⋃

D .
Let now D̃ be the collection of maximal cubes in D . This means that if Q ∈ D̃ , then

there does not exist a cube R ∈ D so that Q ( R. We put the requirement “l(R) ≤ 1” in
the definition of D to be able to choose the maximal cubes. Because every cube Q ∈ D is
contained in some maximal cube, we clearly have

⋃
D̃ =

⋃
D .

Next we show that the maximal cubes are pairwise disjoint. This is an important fact
that appears in many places and the (very simple) proof illustrates the special properties of
dyadic cubes. Suppose Q,R ∈ D̃ . Because Q and R are dyadic cubes one of the following
must hold: Q ∩R = ∅, Q ⊂ R or R ⊂ Q. If Q ⊂ R or R ⊂ Q, then the maximality of the
cubes implies that Q = R. Thus either Q ∩R = ∅ or Q = R.

Putting the above pieces together we get

σ(A) ≤ σ(
⋃

D) = σ(
⋃

D̃) =
∑
R∈D̃

σ(R) ≤ λ(1 + ε)
∑
R∈D̃

µ(R)

= λ(1 + ε)µ(
⋃

D̃) ≤ λ(1 + ε)µ(U) ≤ λ(1 + ε)(µ(A) + ε).

Since this holds for all ε > 0, the claim is proved.

Exercise 6. Again µ is a Radon measure and D0 is the standard collection of dyadic cubes
in Rn. Suppose that for everyQ ∈ D0 we have a measurable functionAQ with sptAQ ⊂ Q.
We define a dyadic square function operator for functions f ∈ L1

loc(µ) by

Af(x) :=
( ∑
Q∈D0

|〈f〉µQ|
2|AQ(x)|2

) 1
2
, x ∈ Rn.

The claim is that for p ∈ (1, 2] there holds

(0.2) ‖Af‖Lp(µ) . Carp((AQ)Q∈D0)‖f‖Lp(µ),

where

Carp((AQ)Q∈D0) := sup
R∈D0

( 1

µ(R)

∫
R

[ ∑
Q∈D0
Q⊂R

|AQ(x)|2
] p

2
dµ(x)

) 1
p
.

To prove (0.2), it is enough by monotone convergence to take an arbitrary finite subcol-
lection D̃ ⊂ D0 and prove the bound for the operator

Ãf(x) :=
( ∑
Q∈D̃

|〈f〉µQ|
2|AQ(x)|2

) 1
2
, x ∈ Rn.
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Define for every j ∈ Z the collection

Dj := {Q ∈ D̃ : 2j ≤ |〈f〉µQ| < 2j+1},

and denote by D∗j the collection of maximal cubes in Dj . These maximal cubes exist
because the collection Dj is finite.

Then, since p
2 ≤ 1, we have 1

‖Ãf‖pLp(µ) =

∫ ( ∑
Q∈D̃

|〈f〉µQ|
2|AQ(x)|2

) p
2
dµ(x)

∼
∫ (∑

j∈Z
22j

∑
Q∈Dj

|AQ(x)|2
) p

2
dµ(x) ≤

∑
j∈Z

2jp
∫ ( ∑

Q∈Dj

|AQ(x)|2
) p

2
dµ(x).

(0.3)

Then, organizing the sums inside the integrals under the maximal cubes (which are dis-
joint) we get∫ ( ∑

Q∈Dj

|AQ(x)|2
) p

2
dµ(x) =

∫ ( ∑
R∈D∗j

∑
Q∈Dj
Q⊂R

|AQ(x)|2
) p

2
dµ(x)

=
∑
R∈D∗j

∫ ( ∑
Q∈Dj
Q⊂R

|AQ(x)|2
) p

2
dµ(x) ≤

∑
R∈D∗j

Carp((AQ)Q∈D0)pµ(R)

= Carp((AQ)Q∈D0)pµ(
⋃

Dj)

(0.4)

Note that
⋃

Dj ⊂ {x ∈ Rn : Md
µf(x) > 2j}, where Md

µ is the dyadic maximal function

Md
µf(x) := sup

x∈Q∈D0

1

µ(Q)

∫
Q
|f |dµ.

The maximal operator Md
µ is bounded in Lp(µ) and hence, using (0.4) in (0.3) leads to

‖Ãf‖pLp(µ) . Carp((AQ)Q∈D0)p
∑
j∈Z

2jpµ({x ∈ Rn : Md
µf(x) > 2j})

. Carp((AQ)Q∈D0)p
∑
j∈Z

∫ 2jp

2(j−1)p

λp−1µ({x ∈ Rn : Md
µf(x) > λ})dλ

∼ Carp((AQ)Q∈D0)p‖Md
µf‖

p
Lp(µ) . Carp((AQ)Q∈D0)p‖f‖pLp(µ).

Remark 1. Note that the constant Carp((AQ)Q∈D0) is also a kind of testing constant for
the operator A. Indeed, if you define for every R ∈ D0 the localized version of the square
function by

ARf(x) :=
( ∑
Q∈D0
Q⊂R

|〈f〉µQ|
2|AQ(x)|2

) 1
2
,

1Note that we used the fact that if 0 < p < q < ∞, then for any sequence (xn)
∞
n=1 ⊂ R we have(∑

n |x|
p
) 1

p ≥
(∑

n |x|
q
) 1

q
.
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then

Carp((AQ)Q∈D0) = sup
R∈D0

‖AR1R‖Lp(µ)
‖1R‖Lp(µ)

.

In particular, if for some p ∈ (1, 2] you know that there exists some constant C such that
‖A1R‖Lp(µ) ≤ C‖1R‖Lp(µ) for all R ∈ D0, then you know that A is bounded in Lp(µ).
This means that to get the boundedness of A it is enough to test it with indicators of dyadic
cubes!

Exercise 7. In this Exercise we have a Radon measure µ in Rn and in every cube Q ∈ D0

a function ϕQ such that
• suppϕQ ⊂ Q.
• ϕQ is constant on the children of Q.
• ‖ϕQ‖L∞(µ) ≤ 1.

For every P ∈ D0 we define the function

ΦP := sup
ε>0

∣∣∣ ∑
Q⊂P
l(Q)>ε

ϕQ

∣∣∣.
Then assume for every P ∈ D0 that

µ({ΦP > 1}) ≤ 1

2
µ(P ),

and the claim is that for every t > 1 we have

(0.5) µ({ΦP > t}) ≤ 2−(t−1)/2µ(P ).

Proof. Because each ϕQ is constant on the children of Q, it can be written as

ϕQ =
∑

Q′∈ch(Q)

cQ′1Q′

for some constants cQ′ such that |cQ′ | ≤ 1. Thus also the function ΦP can be written as

ΦP = sup
ε>0

∣∣∣ ∑
Q(P
l(Q)>ε

cQ1Q

∣∣∣.
For any Q0 ∈ D0 let F(Q0) denote the maximal cubes (if they exist) Q′ ∈ D0, Q

′ ( Q0,
such that ∣∣∣ ∑

Q: Q′⊂Q(Q0

cQ

∣∣∣ > 1.

If Q′ ∈ F(Q0), then clearly ΦQ0(x) > 1 for all y ∈ Q′. On the other hand if ΦQ0(x) > 1,
then there clearly exists a Q′ ∈ F(Q0) such that x ∈ Q′. Hence

(0.6) {ΦQ0 > 1} =
⋃

Q′∈F(Q0)

Q′,

and the assumptions imply that µ(
⋃
Q′∈F(Q0)

Q′) =
∑

Q′∈F(Q0)
µ(Q′) ≤ 1

2µ(Q0).
To prove (0.5), fix some cube P ∈ D0 and t > 1. Looking at the claim we see that

we can actually assume t > 3. Let m ∈ Z be largest so that t − 2m > 1. Suppose now
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x ∈ {ΦP > t}. Then by (0.6) we now that there exists a cube Q′ ∈ F(P ) such that x ∈ Q′.
Because ΦP (x) > t there exists some S ∈ D0, x ∈ S, such that

(0.7)
∣∣∣ ∑
Q: S⊂Q(Q0

cQ

∣∣∣ > t.

The maximality in the definition of Q′ ∈ F(P ) implies that S ⊂ Q′.
But on the other hand, again by the maximality Q′ ∈ F(P ) and the fact that |cQ′ | ≤ 1,

we have ∣∣∣ ∑
Q: S⊂Q(Q0

cQ

∣∣∣ ≤ ∣∣∣ ∑
Q: S⊂Q(Q′

cQ

∣∣∣+ |cQ′ |+
∣∣∣ ∑
Q: Q′(Q(P

cQ

∣∣∣
≤
∣∣∣ ∑
Q: S⊂Q(Q′

cQ

∣∣∣+ 2,

which, combined with (0.7), implies that

ΦQ′(x) ≥
∣∣∣ ∑
Q: S⊂Q(Q′

cQ

∣∣∣ > t− 2.

Collecting the above considerations we have shown that

{ΦP > t} ⊂
⋃

Q′∈F(P )

{x ∈ Q′ : ΦQ′(x) > t− 2}.

Then, beginning with the cubes Q′ ∈ F(P ) we can continue this process inductively to get

{ΦP > t} ⊂
⋃

Q1
i∈F(P )

{x ∈ Q1
i : ΦQ1

i
(x) > t− 2}

⊂
⋃

Q1
i∈F(P )

⋃
Q2
j∈F(Q1

i )

{x ∈ Q2
j : ΦQ2

j
(x) > t− 4}

⊂
⋃

Q1
i∈F(P )

· · ·
⋃

Qmk ∈F(Q
m−1
j )

{x ∈ Qmk : ΦQmk
(x) > t− 2m}.

Remember that 3 ≥ t− 2m > 1. Since the collections F(Q) consist of pairwise disjoint
cubes we can estimate

µ({ΦP > t}) ≤
∑

Q1
i∈F(P )

· · ·
∑

Qmk ∈F(Q
m−1
j )

µ({x ∈ Qmk : ΦQmk
(x) > t− 2m})

≤
∑

Q1
i∈F(P )

· · ·
∑

Qmk ∈F(Q
m−1
j )

1

2
µ(Qmk )

≤
∑

Q1
i∈F(P )

· · ·
∑

Qm−1
j ∈F(Qm−2

l )

1

4
µ(Qm−1k )

≤ 1

2m+1
µ(P ) ≤ 2−

t−1
2 µ(P ).

This concludes the proof. �
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Exercise 8. In the situation of the previous Exercise we want to show for every P ∈ D0

that ∫
P
|ΦP |pdµ ≤ C(p)µ(P ), p ∈ (0,∞).

The idea is that (0.5) implies that as t→∞ the measure of {ΦP > t} goes to zero very
fast, and a way to use this information is some estimate for the integral using the size of the
level sets {ΦP > t}. Indeed, using for example the distribution formula, estimate as∫

P
|ΦP |pdµ =

∫ ∞
0

pλp−1µ({ΦP > λ})dλ

≤
∫ 1

0
pλp−1µ(P )dλ+

∫ ∞
1

pλp−12−
λ−1
2 µ(P )dλ,

and what is left to do is to show that ∫ ∞
1

λp−1

2
λ−1
2

<∞.

Let m ∈ Z be the smallest integer m > p. Write 2
λ−1
2 = e

λ−1
2

ln 2 = e−
1
2
ln 2e

λ
2
ln 2 =

Cecλ. Then ∫ ∞
1

λp−1

2
λ−1
2

=

∫ ∞
1

λp−1

Cecλ
dλ ≤

∫ ∞
1

λp−1

C (cλ)m

m!

dλ <∞,

since m− p+ 1 > 1.


