
EXERCISE SET 3, SUGGESTIONS FOR SOLUTIONS

EMIL VUORINEN

Exercise 1. Here we check that for any f ∈ L1
loc(σ) the martingale differences ∆P f, P ∈

Dtr, defined in the lecture notes, satisfy∫
∆P fdσ = 0.

Indeed, ∫
∆P fdσ =

∑
P ′∈ch(P )∩Dtr

(〈f〉P ′
〈b〉P ′

− 〈f〉P
〈b〉P

)∫
P ′
bdσ

+
∑

P ′∈ch(P )∩Dterm

(∫
P ′
fdσ − 〈f〉P

〈b〉P

∫
P ′
bdσ
)

=
∑

P ′∈ch(P )∩Dtr

(∫
P ′
fdσ − 〈f〉P

〈b〉P

∫
P ′
bdσ
)

+
∑

P ′∈ch(P )∩Dterm

(∫
P ′
fdσ − 〈f〉P

〈b〉P

∫
P ′
bdσ
)

=

∫
P
fdσ − 〈f〉P

〈b〉P

∫
P
bdσ = 0.

Exercise 2. Let the assumptions be as in the statement of the exercise. To find the set
G ⊂ E with positive measure where the square function is bounded, we want to use the
big pieces global Tb with the test function 1Q. If one defines the collections Tω with the
function 1Q and the constant cacc = 1

2 as in the lecture notes, one gets Tω = ∅. Indeed, for
every R ∈ D(ω) it holds that ∫

R 1Qdσ

σ(R)
=
σ(R)

σ(R)
= 1,

where we used the fact that σ is supported on Q.
Hence, to apply the theorem, we want to find a setH ⊃ Q\E and constants s, C0, C1 > 0

so that the following properties hold:
• σ(H) ≤ δ0σ(Q) for some δ ∈ (0, 1).
• If Br ⊂ Rn is a ball of radius r and σ(Br) > C0r

m, then Br ⊂ H .
• supλ>0 λ

sσ({x ∈ Q \H : Vσ,Q1Q(x) > λ}) ≤ C1σ(Q).
If such a set H is found, then the big pieces global Tb gives us a set G ⊂ Q \H ⊂ E with
positive measure where the L2-bound for the square function holds.
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Let us now construct the set H . Write ϕ(x) := supr>0
σ(B(x,r))

rm . Set first

H0 := {x ∈ Rn : ϕ(x) > λ0}
for some λ0 to be specified later. For every x ∈ H0 define

R(x) := sup{r > 0 :
σ(B(x, r))

rm
> λ0},

and then write
H1 :=

⋃
x∈H0

B(x,R(x)).

If y ∈ B(x,R(x)) for some x ∈ H0, then

σ(B(y, 2R(x))

(2R(x))m
≥ 2−m

σ(B(x,R(x))

R(x)m
≥ 2−mλ0.

Hence H1 ⊂ {x ∈ Rn : ϕ(x) ≥ 2−mλ0}. Because ϕ(x) < ∞ for all x ∈ E, we see that
σ(E ∩H1) ≤ 1

3σ(E) if λ0 is large enough. Fix now one such λ0.
Next, consider the set S0 := {x ∈ E : Vσ,Q1Q(x) > t0} for some t0 > 0. Since

Vσ,Q1Q(x) <∞ for all x ∈ E, we get σ(S0) ≤ σ(E)
3 for some big enough t0. Fix one such

t0.
Now, finally setH := H1∪S0∪(Q\E). If σ(B(x,r))

rm > λ0, thenB(x, r) ⊂ B(x,R(x)) ⊂
H1 ⊂ H . Also, we have

sup
λ>0

λσ({x ∈ Q \H : Vσ,Q1(x) > λ}) ≤ t0σ(Q).

Thus, we have verified the required properties for the set H with δ0 =
σ(Q)− 1

3
σ(E)

σ(Q) <

1, C0 = λ0, C1 = t0 and s = 1. This finishes the proof.

Exercise 3. Let (st)t>0 be an m-LP family and θµt , t > 0, the corresponding integral oper-
ators. Suppose µ is a Radon measure on Rn and Q ⊂ Rn is a cube. The claim is that∥∥∥x 7→ 1Q(x)

(∫ ∞
l(Q)
|θµt f(x)|2dt

t

) 1
2
∥∥∥
L2(µ)

.
µ(Q)

l(Q)m
‖f‖L2(µ)

for every f with sptf ⊂ Q.
To prove this, let f ∈ L2(µ) with support in Q. Then, for every x ∈ Rn, we have∫ ∞

l(Q)
|θµt f(x)|2dt

t
.
∫ ∞
l(Q)

‖f‖2L1(µ)

t2m
dt

t
.
µ(Q)‖f‖2L2(µ)

l(Q)2m
.

Integrating this over x ∈ Q proves the claim.

Exercise 4. Suppose D1 and D2 are two dyadic lattices in Rn. Let γ ∈ (0, 1) and r =

1, 2, . . . We say that a cube R ∈ D1 is (γ, r)−D2-good if d(R, ∂Q) > l(R)γl(Q)(1−γ) for
all cubes Q ∈ D2 with l(Q) ≥ 2rl(R). Let D1,good be the collection of these good cubes.

Also, suppose that µ is a Radon measure in Rn, and letM > 1 be fixed. For any function
a ∈ BMO2

M (µ) we define the operator Πa by

(0.1) Πaf :=
∑
R∈D2

〈f〉R
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

DQa, f ∈ L2(µ).
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The claim is that, for a big enough r, there exists an absolute constant C such that

(0.2) ‖Πaf‖L2(µ) ≤ C‖a‖BMO2
M (µ)‖f‖L2(µ)

holds for all f ∈ L2(µ) and a ∈ BMO2
M (µ).

Proof. Let D̃2 ⊂ D2 be an arbitrary finite subcollection. Then

‖
∑
R∈D̃2

〈f〉R
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

DQa‖2L2(µ) =
∑
R∈D̃2

|〈f〉R|2
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

‖DQa‖2L2(µ)

≤
∑
R∈D2

|〈f〉R|2
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

‖DQa‖2L2(µ).

We will show that there exists a constant C such that

(0.3)
∑
R∈D2

|〈f〉R|2
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

‖DQa‖2L2(µ) ≤ C‖a‖
2
BMO2

M (µ)
‖f‖2L2(µ).

From this it follows that Πa is well defined, that is, the series in (0.1) converges in L2(µ),
and that the L2-bound (0.2) holds.

From (0.3) we see that it is enough to verify the Carleson property for the numbers

(0.4) aR :=
∑

Q∈D1,good
Q⊂R

l(Q)=2−rl(R)

‖DQa‖2L2(µ), R ∈ D2.

In other words, we want to have a constant C such that for all R0 ∈ D2 it holds that∑
R∈D2
R⊂R0

aR ≤ Cµ(R0).

To this end, fix some cube R0 ∈ D2. For any Q ∈ D2 denote by W(Q) the collec-
tion of maximal cubes Q′ ∈ D1 such that Q′ ⊂ Q, l(Q′) ≤ 2−rl(Q) and d(Q′, ∂Q) >
l(Q′)γl(Q)1−γ . Using this we get∑

R∈D2
R⊂R0

aR =
∑

Q∈D1,good
Q⊂R0

l(Q)≤2−rl(R)

‖DQa‖2L2(µ) ≤
∑

R∈W(R0)

∑
Q∈D1
Q⊂R

‖DQa‖2L2(µ)

=
∑

R∈W(R0)

∫
R
|a− 〈a〉R|2dµ ≤

∑
R∈W(R0)

‖a‖2BMO2
M (µ)

µ(MR).

(0.5)

To conclude the estimate, we would like to have∑
R∈W(R0)

µ(MR) . µ(R0).

This will follow from the facts that the cubes MR,R ∈ W(R0), have bounded overlap and
satisfy MR ⊂ U . We show this next.
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LetR ∈ W(R0). Then, by definition, we have d(R, ∂R0) > l(R)γl(R0)1−γ ≥ 2r(1−γ)l(R).
This shows that MR ⊂ R0 if r is big enough. Also, if l(R) < 2−rl(R0), then by the maxi-
mality in the definition ofW(R0) we have

d(R, ∂R0) ≤ diam(R) + d(R(1), ∂R0) ≤ diam(R) + l(R(1))γl(R0)1−γ

= diam(R) + 2γl(R)γl(R0)1−γ ∼ l(R)γl(R0)1−γ ,

since l(R)γl(R0)1−γ ≥ l(R) ∼ diam(R). Hence, we have shown that if l(R) < 2−rl(R0),
then

(0.6) l(R)γl(R0)1−γ < d(R, ∂R0) ≤ C1l(R)γl(R0)1−γ

for some constant C1 = C1(γ, n).
Suppose now R,R′ ∈ W(R0) and MR ∩MR′ 6= ∅. The idea is that these cubes must

have comparable (depending on M and γ) sidelengths, or otherwise the bigger cube is too
close to the boundary ∂R0. Assume that l(R) = 2−kl(R′) for some k = 1, 2, . . . Then

d(R′, ∂R0) ≤Mdiam(R′) +Mdiam(R) + d(R, ∂R0)

≤Mdiam(R′) +Mdiam(R) + C1l(R)γl(R0)1−γ

= Mdiam(R′) +M2−kdiam(R′) + C12−kγl(R′)γl(R0)1−γ .

If k = k(M,γ, n) is big enough, then

M2−kdiam(R′) + C12−kγl(R′)γl(R0)1−γ ≤ 1

4
l(R′)γl(R0)1−γ .

Also, we have

Mdiam(R′) =
n

1
2Ml(R′)

l(R′)γl(R0)1−γ l(R
′)γl(R0)1−γ

= n
1
2M

l(R′)1−γ

l(R0)1−γ l(R
′)γl(R0)1−γ

≤ n
1
2M2−r(1−γ)l(R′)γl(R0)1−γ ≤ 1

4
l(R′)γl(R0)1−γ

if r = r(M,γ, n) is big enough.
Combining the above estimates, we see that for a fixed big enough r, there exists a k0 ∈ N

such that if k ≥ k0, then

d(R′, ∂R0) ≤ 3

4
l(R′)γl(R0)1−γ ,

which is a contradiction because R′ ∈ W(R0).
Let R ∈ W(R0). We have shown that if R′ ∈ W(R0) and MR ∩ MR′ 6= ∅, then

2−k0 l(R′) ≤ l(R) ≤ 2k0 l(R′). Hence also R′ ⊂ CR for some constant C = C(M,k0).
Since the number of this kind of intervals R′ is bounded by some constant depending on the
dimension n and C(M,k0), we finally see that the number of intervals R′ ∈ W(R0) such
that MR ∩MR′ 6= ∅ is uniformly bounded. �

Exercise 5. Let µ be a Radon measure of order m in Rn and p ∈ [1,∞). Suppose Q ⊂ Rn
is a cube with t-small boundary. The claim is that∫

Q

(∫
2Q\Q

dµ(y)

|x− y|m
)p
dµ(x) . tµ(2Q).
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Proof. For any x ∈ Rn and any non negative k ∈ Z we have∫
B̄(x,2l(Q))\B(x,2−kl(Q))

dµ(y)

|x− y|m
=

k∑
l=0

∫
B̄(x,2−l+1l(Q))\B(x,2−ll(Q))

dµ(y)

|x− y|m

≤
k∑
l=0

µ(B̄(x, 2−l+1l(Q)))

(2−ll(Q))m
. k + 1.

Divide the interior intQ of the cube into subsets Bk := {x ∈ Q : 2−k−1l(Q) ≤
d(x, ∂Q) ≤ 2−kl(Q)}, k = 1, 2, . . . The small boundary property of Q implies that
µ(∂Q) = 0 and µ(Bk) ≤ t2−kµ(2Q). Hence∫
Q

(∫
2Q\Q

dµ(y)

|x− y|m
)p
dµ(x) ≤

∞∑
k=1

∫
Bk

(∫
B̄(x,2l(Q))\B(x,2−k−1l(Q))

dµ(y)

|x− y|m
)p
dµ(x)

.
∞∑
k=1

(k + 2)pµ(Bk) ≤
∞∑
k=1

(k + 2)pt2−kµ(2Q)

. tµ(2Q).

�


