EXERCISE SET 3, SUGGESTIONS FOR SOLUTIONS

EMIL VUORINEN

Exercise 1. Here we check that for any f € Lj. (o) the martingale differences Ap f, P €
D' defined in the lecture notes, satisfy

/Apfda = 0.

Indeed,
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Exercise 2. Let the assumptions be as in the statement of the exercise. To find the set
G C FE with positive measure where the square function is bounded, we want to use the
big pieces global T'b with the test function 1¢. If one defines the collections 7T;, with the
function 1¢ and the constant c,c. = % as in the lecture notes, one gets T,, = (). Indeed, for
every R € D(w) it holds that

Jrlodo _ o(R) —1
o(R)  o(R)
where we used the fact that ¢ is supported on Q.
Hence, to apply the theorem, we want to find a set H O @\ E and constants s, Cp, C; > 0
so that the following properties hold:
e 0(H) < 6po(Q) for some ¢ € (0, 1).
e If B, C R™is aball of radius r and o(B,) > Cyr™, then B, C H.
o sup o No({x € Q\ H : V,0lg(z) > A}) < Cio(Q).
If such a set H is found, then the big pieces global 70 gives us aset G C @ \ H C E with

positive measure where the L2-bound for the square function holds.
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Let us now construct the set H. Write p(z) := sup,~ o(B ( ") Set first
Hy:={z e R": p(z) > \o}
for some \q to be specified later. For every x € H( define

o(B(z,r))

R(z) :=sup{r > 0: > Ao},

and then write
Hy:= | ] B(x,R(z)).
rEHy
If y € B(x, R(x)) for some z € Hy, then

B, 2R @) o no(Bla R@) oo

(2R (x))™ R(x)™
Hence H; C {x € R™ : p(x) > 27™\o}. Because p(z) < oo for all z € FE, we see that
o(ENHp) < %O'(E) if Ao is large enough. Fix now one such A.

Next, consider the set Sy := {z € E : V,olg(z) > to} for some tyg > 0. Since
Voolo(x) < oo forall z € E, we get 0(Sp) < @ for some big enough . Fix one such
to.

Now, finally set H := HyUSU(Q\E). If ZB&) 5 3o then B(z,r) C B(z, R(z)) C
H, C H. Also, we have

supAo({x € Q\ H : V,gl(x) > A}) < too(Q).

A>0
Thus, we have verified the required properties for the set H with g = 0770 <
1,Cy = Ao, C1 = tp and s = 1. This finishes the proof.

Exercise 3. Let (s¢)¢~0 be an m-LP family and 0.', ¢ > 0, the corresponding integral oper-
ators. Suppose p is a Radon measure on R™ and () C R" is a cube. The claim is that

Q)
L2~ UQ)™

[e.9]

o s0ta)( [ ot rR )

for every f with sptf C Q.
To prove this, let f € L?(p) with support in Q. Then, for every = € R”, we have

/Oo 108 f(x )\2</ IAUE M
@ t > BTt SN )ET

Integrating this over x € () proves the claim.
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Exercise 4. Suppose D; and D, are two dyadic lattices in R™. Lety € (0,1) and r =
1,2,... We say that a cube R € Dy is (v,7) — Do-good if d(R, Q) > I(R)1(Q)~") for
all cubes @@ € Dy with [(Q) > 2"I(R). Let Dy 400a be the collection of these good cubes.

Also, suppose that 1 is a Radon measure in R", and let M > 1 be fixed. For any function
a € BMO?, (1) we define the operator II,, by

(0.1) Maf:= > (/g >, Doa, feL).
ReD> erl,good
QCR

HQ)=27"IU(R)
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The claim is that, for a big enough r, there exists an absolute constant C' such that

0.2) HHafHLQ(p) < CHGHBMO?M(;;)Hf”LQ(H)
holds for all f € L?(;1) and a € BMO?,(1).

Proof. Let 152 C D5 be an arbitrary finite subcollection. Then

1> e > Dadlltegy= D UN&P Y IDgalZz,

RED"Q erl,guod RE’D~2 erl,good
QCR QCR
H(Q)=2""I(R) H(Q)=2""U(R)
<SS UNRP DD IDgalliz -
ReD> QEDI,gond
QCR
(Q)=2""U(R)
We will show that there exists a constant C' such that
(0.3) Z (f) &I Z HDQQH%2(M) < CHGHEMO;M(M)Hf||%2(u)'
ReD> erl,good
QCR
HQ)=2""I(R)

From this it follows that II, is well defined, that is, the series in (0.1) converges in Lg(,u),
and that the L?-bound (0.2) holds.
From (0.3) we see that it is enough to verify the Carleson property for the numbers

(0.4) ar:= Y. |Dqalli2(y R€Da.

QEDI,g()()d
QCR

(Q)=27"I(R)
In other words, we want to have a constant C' such that for all Ry € D, it holds that

Z ar < Cu(Ry).

ReDy
RCRy

To this end, fix some cube Ry € Ds. For any Q € D; denote by W(Q) the collec-
tion of maximal cubes Q' € D such that @' C @, I(Q') < 27"(Q) and d(Q’,0Q) >
1(Q)1(Q)* 7. Using this we get

Z aR = Z HDQGH%?(;L) < Z Z HDQGH%?(!L)

ReDy erl,good REW(RO) QEDI
RCRy QCRp QCR
0.5 H(Q)<27"I(R)
= % [le-@alaus Y lalfos, MR,
REW(Ro) ReEW(Ro)

To conclude the estimate, we would like to have
> w(MR) 5 p(Ro).
REW(Ro)

This will follow from the facts that the cubes M R, R € W(R)), have bounded overlap and
satisfy M R C U. We show this next.
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Let R € W(Ry). Then, by definition, we have d(R, dRo) > I[(R)"I(R)'~" > 2"(=M[(R).

This shows that M R C Ry if r is big enough. Also, if [(R) < 27"I(Rp), then by the maxi-
mality in the definition of W(Ry) we have

d(R,dRy) < diam(R) + d(R"W,dRy) < diam(R) + I(RM)I(R)' ™
= diam(R) + 27I(R)"I(Ro)*™ ~ I(R)"1(Ro)' ™7,

since I(R)7I(Ry)*~ > I(R) ~ diam(R). Hence, we have shown that if [(R) < 27"I(Ry),
then
(0.6) I(R)"I(Ro)' ™" < d(R,0Ro) < C11(R)"I(Ro)' ™"

for some constant C; = C(7,n).

Suppose now R, R’ € W(Ry) and MR N MR’ # (). The idea is that these cubes must
have comparable (depending on M and -y) sidelengths, or otherwise the bigger cube is too
close to the boundary O Ry. Assume that [(R) = 27*I(R’) for some k = 1,2,... Then

d(R',0Ry) < Mdiam(R') + Mdiam(R) + d(R, ORy)
< Mdiam(R') + Mdiam(R) 4+ C1I(R)"I(Ro)' ™"
= Mdiam(R') + M2 *diam(R') + C12 ¥ I(R)1(Ry)* .
If £ = k(M,~,n) is big enough, then
1
M2 *diam(R') + C12 M I(R')I(Ro) ™7 < Zz(R’m(Ro)l—V.
Also, we have
nz MI(R)
H(R)V(Ro)' =
L AR -
— M Y 0l
n2 Z(RO)I_WZ(R) I(Ro)

1
< n2 M2 "D RYI(R) T < JR)I(Ro)'

Mdiam(R') = I(R)1(Ro)' ™

if r = r(M,~,n) is big enough.
Combining the above estimates, we see that for a fixed big enough r, there exists a kg € N
such that if £ > kg, then

d(R',0Ry) < zl(R’)Vl(Ro)l’V,

which is a contradiction because R’ € W(Ry).

Let R € W(Ry). We have shown that if R’ € W(Ry) and MR N MR’ # (), then
27%0[(R) < I(R) < 2*[(R’). Hence also R' C CR for some constant C' = C(M, ko).
Since the number of this kind of intervals R’ is bounded by some constant depending on the
dimension n and C'(M, ko), we finally see that the number of intervals R’ € W(Ry) such
that M RN M R’ # () is uniformly bounded. O

Exercise 5. Let 1 be a Radon measure of order m in R™ and p € [1, 00). Suppose Q C R"
is a cube with ¢-small boundary. The claim is that

/Q </2Q\Q myd“(m) S t(2Q).
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Proof. For any x € R™ and any non negative k € Z we have

k
/ du(y) = / du(y)
B 2@N\B@2- Q) [ = Y™ = JBearu@nBe2-u@) [T —y™

k I+1
2 !
SE ><Q))>§/~c+1.
Divide the interior intQ of the cube into subsets By, := {z € Q : 27F71[(Q) <

d(z,0Q) < 27%(Q)},k = 1,2,... The small boundary property of @ implies that
w(0Q) = 0 and pu(By) < t27%1(2Q). Hence

duly) \» - du(y) \»
/Q(/?Q\Q ﬁ) i) < Z/Bk </B(x 2(Q)\B(z 27+ 11(Q) #> ()

SO (k+2Pu(By) <D (k+2)P27Fu(2Q)
k k=1

1
t(2Q).

N



