
EXERCISE SET 1, SUGGESTIONS FOR SOLUTIONS

EMIL VUORINEN

Any comments about the exercises or solutions are warmly welcomed!

About notation. If A,B > 0 are two numbers we write A . B to mean that there exists
some absolute constant C > 0 such that A ≤ CB, and the constant C does not depend
on any relevant information in the situation. For example, knowing that the centred Hardy-
Littlewood maximal function Mµ is bounded in Lp(µ), 1 < p ≤ ∞, we might when we are
not interested in precise constants write that ‖Mµf‖Lp(µ) . ‖f‖Lp(µ), where the implicit
constant is the norm of the maximal operator. No confusion should arise about this notation.
Also A . B . A is abbreviated as A ∼ B.

Exercise 1. The claim is that if µ is finite or of order m, then for any f ∈
⋃
p∈[1,∞] L

p(µ)

we have ∫
Rn
|st(x, y)f(y)|dµ(y) <∞

for all x ∈ Rn, t > 0. So consider some p ∈ [1,∞] and f ∈ Lp(µ), and suppose first that
µ is finite. Then the size estimate for the kernel gives

∫
Rn
|st(x, y)f(y)|dµ(y) .

‖f‖L1(µ)

tm
.

Assume then that µ is of order m. Hölder’s inequality leads to

∫
Rn
|st(x, y)f(y)|dµ(y) .

(∫
Rn

tαp
′

(t+ |x− y|)(m+α)p′
dµ(y)

) 1
p′ ‖f‖Lp(µ)

with the usual interpretation if p′ =∞, in which case we are clearly already done.
To estimate the integral when p′ 6=∞, write (m+α)p′ = m+(m+α)p′−m =: m+β,

where β > 0. Next we are going to divide the integration area into certain annuli centred at
x. This is an important idea and variations of this will reappear also later in the exercises
and during the course.
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We have ∫
Rn

1

(t+ |x− y|)m+β
dµ(y) =

∫
B(x,t)

1

(t+ |x− y|)m+β
dµ(y)

+

∞∑
k=1

∫
B(x,2kt)\B(x,2k−1t)

1

(t+ |x− y|)m+β
dµ(y)

≤ µ(B(x, t))

tm+β
+

∞∑
k=1

µ(B(x, 2kt))

(2k−1t)m+β

.
tm

tm+β
+
∞∑
k=1

(2kt)m

(2kt)m+β

=
1

tβ
+

1

tβ

∞∑
k=1

1

2kβ
.

1

tβ
.

(0.1)

Note how we used the size of the parameter t in the nominator to set the sizes of the annuli.

Exercise 2. We assume that µ is of order m and show that |θµt f(x)| ≤ CMµf(x) for all
f ∈ L1

loc(µ). Use of the size estimate of the kernel and a division into annuli as in Exercise
1 give

|θµt f(x)| .
∫
Rn

tα|f(y)|
(t+ |x− y|)m+α

dµ(y)

∼ tα
∫
B(x,t)

|f(y)|
tm+α

dµ(y) +
∞∑
k=1

∫
B(x,2kt)\B(x,2(k−1)t)

tα|f(y)|
(2kt)m+α

dµ(y)

.
tα

tα
1

µ(B(x, t))

∫
B(x,t)

|f(y)|dµ(y)

+
∞∑
k=1

tα

2kαtα
1

µ(B(x, 2kt))

∫
B(x,2kt)

|f(y)|dµ(y)

≤Mµf(x)
∞∑
k=0

1

2kα
∼Mµf(x).

Since the centred Hardy-Littlewood maximal function is bounded in L2(µ) (and also for
every p ∈ (1,∞]), we see that the family θt, t > 0 is uniformly bounded in L2(µ) (and in
Lp(µ) for every p ∈ (1,∞]).

To get a family {Vi,µ}i∈N of square functions such that ‖Vi,µ‖L2(µ)→L2(µ) ≤ C(i), Vi,µf ≤
Vi+1,µf and Vi,µf(x)→ Vµf(x) as i→∞ for all x ∈ Rn, define the kernels si,t(x, y) :=
st(x, y)1 1

i
≤t≤i. For all i ∈ N the collection (si,t)t>0 is clearly an m-LP-family of kernels

and with it we can define the corresponding square function Vi,µ.
Now directly from the definition we see that, if f ∈

⋃
p∈[1,∞] L

p(µ), then

Vi,µf(x) =
(∫ i

1
i

|θµt f(x)|2dt
t

) 1
2
.

From here we deduce that Vi,µf(x) ≤ Vi+1,µf(x) and Vi,µf(x) → Vµf(x) as i → ∞. To
have the L2(µ) boundedness, we use the above formula and the beginning of this exercise
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to get

Vi,µf(x) .
(∫ i

1
i

dt

t

) 1
2
Mµf(x).

When dealing with square functions, for example when we want to show that they are
bounded with some quantitative constant as later in this course, it can sometimes be nice
to know that the square function in question is a priori bounded, that is, there exists some
constantC such that ‖Vµf‖L2(µ) ≤ C‖f‖L2(µ) for all f ∈ L2(µ). This in particular implies
that ‖Vµf‖L2(µ) is a finite number for all L2(µ)-functions. To achieve this one can in some
cases use the above truncated square functions Vi,µ, show that they satisfy the required L2

boundedness property and then take the limit i → ∞ to get the conclusion for original
operator Vµ.

Exercise 3. In this exercise the task is to show that the vector space M(Rn) of all complex
Borel measures on Rn is a Banach space when equipped with the total variation norm (one
should check that this is first of all a vector space and then that the total variation defines a
norm). So let (νi)

∞
i=1 ⊂ M(Rn) be a Cauchy sequence. Supposing there exists some limit

measure ν, then for any Borel set A it holds that

|ν(A)− νi(A)| ≤ |ν − νi|(A) ≤ ‖ν − νi‖ → 0,

as i → ∞. Thus, if the limit measure exists, then limi→∞ νi(A) = ν(A). So we try to
define the measure ν like this.

Let ε > 0. By the definition of a Cauchy sequence there exists Nε ∈ N such that
‖νi − νj‖ ≤ ε for all i, j ≥ Nε. Now for any i, j ≥ Nε we have

|νi(A)− νj(A)| ≤ |νi − νj |(A) ≤ ‖νi − νj‖ ≤ ε.

Hence for any Borel set A the sequence (νi(A))∞i=1 is a Cauchy sequence in C, and by
completeness of the complex numbers it has a limit as i→∞.

Now the only way to define the possible limit measure is

ν(A) := lim
i→∞

νi(A), A ∈ Bor(Rn),

and this is what we do now. Then the thing to do is to show that ν is a complex Borel
measure and that νi → ν in the variation norm, as i→∞.

To this end take arbitrary Borel sets A,Ak, k = 1, 2, 3, . . . , such that Ak ∩ Al = ∅ if
k 6= l and A =

⋃∞
k=1Ak. Let also ε > 0 be arbitrary. By the definition of a Cauchy

sequence choose some Nε ∈ N such that ‖νi − νj‖ ≤ ε for all i, j ≥ Nε. Fix any j0 ≥ Nε.
If l = 1, 2, . . . is any number, then

l∑
k=1

|ν(Ak)− νj0(Ak)| = lim
i→∞

l∑
k=1

|νi(Ak)− νj0(Ak)| ≤ lim sup
i→∞

‖νi − νj0‖ ≤ ε.

Since this holds for all l we get

(0.2)
∞∑
k=1

|ν(Ak)− νj0(Ak)| ≤ ε,
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and thus also

(0.3)
∞∑
k=1

|ν(Ak)| ≤ ε+ ‖νj0‖.

By (0.3) it makes sense 1 to talk about
∑

k ν(Ak). By (0.2) and the fact that νi(A) =∑
k νi(Ak) for all i we have

|ν(A)−
∑
k

ν(Ak)| ≤ |ν(A)− νj0(A)|+ |
∑
k

νj0(Ak)−
∑
k

ν(Ak)|

≤ |ν(A)− νj0(A)|+
∑
k

|νj0(Ak)− ν(Ak)|

≤ 2ε,

where we clearly had |ν(A) − νj0(A)| = limi→∞ |νi(A) − νj0(A)| ≤ ε. Since this holds
for all ε > 0, it must be that ν(A) =

∑
k ν(Ak), and thus ν is a complex (Borel) measure.

Since the sets Ak and ε > 0 were arbitrary, it is seen from (0.2) that ‖ν − νi‖ → 0, as
i→∞.

Exercise 4. Here we have a measure µ of orderm, and numbers β > αm (which are greater
than 1) and c > 0. We’ll show that for all x ∈ spt µ there exists an (α, β)-doubling cube Q
centred at x with side length l(Q) ≥ c. Actually, let us with the same effort show that this
holds for any x ∈ Rn.

Fix some point x, and consider the cubes Q(x, αkc), k = 0, 1, 2, . . . , centred at x with
side length αkc. The idea is that if for some k the cube Q(x, αkc) is not doubling, then
µ(Q(x, αk+1c)) > βµ(Q(x, αk)), and if this happens for all k then it implies that the
measure of Q(x, αkc) grows too fast for the measure µ to be of order m.

So to get a contradiction assume that none of the cubes Q(x, αkc), k = 0, 1, 2, . . . , is
doubling. Then

(0.4)
µ(Q(x, αk+1c))

(αk+1c)m
≥
( β
αm
)k+1µ(Q(x, c))

cm
→∞, k →∞,

because β > αm. This is impossible since if µ is of order m the left hand side of (0.4) stays
bounded.2

Exercise 5. Suppose again we have a measure µ of order m. Define the conical square
function for any f ∈

⋃
p∈[1,∞] L

p(µ) by

Sµf(x) :=
(∫∫

Γ(x)
|θµt f(y)|2dt dµ(y)

tm+1

) 1
2
,

where Γ(x) := {(y, t) ∈ Rn+1
+ : |y − x| < t}. We want to find some m-LP-family of

kernels and a related vertical square function Vµ so that ‖Sµf‖L2(µ) = ‖Vµf‖L2(µ) for all
f ∈ L2(µ).

1Note that in the definition of a complex measure we require ν(A) =
∑
k ν(Ak) for sets as above. This

means that the series should be convergent to ν(A) in any order, and this implies that the series is actually
absolutely convergent. Conversely, if a series

∑∞
k=1 |ak| of some complex numbers ak converges absolutely,

then
∑
k ak converges to the same value in any ordering of the numbers ak.

2The definition of µ being of order m is stated in terms of balls, but it is easy to see that it can equivalently
be done with cubes with a possibly different constant.
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Let us just look what the L2(µ)-norm of the conical square function applied to some
f ∈ L2(µ) looks like. Using Fubini we have

‖Sµf‖2L2(µ) =

∫
Rn

∫∫
Rn+1

1Γ(x)(y, t)|θ
µ
t f(y)|2dt dµ(y)

tm+1
dµ(x)

=

∫
Rn

∫ ∞
0

∫
Rn

1Γ(x)(y, t)dµ(x)|θµt f(y)|2dt dµ(y)

tm+1

=

∫
Rn

∫ ∞
0

µ(B(y, t))

tm
|θµt f(y)|2dt

t
dµ(y).

So if we define the kernels for all t > 0 by

Rn × Rn 3 (x, y) 7→ s̃t(x, y) := st(x, y)
(µ(B(x, t))

tm

) 1
2
,

then we see that in principle the vertical square function Vµ defined using these kernels
satisfies ‖Sµf‖L2(µ) = ‖Vµf‖L2(µ).

We still have to verify that (s̃t)t>0 is an admissible family of kernels, that is, it satisfies
the required size- and y-Hölder estimates. But this is quite immediate since µ is of order m
and thus µ(B(x,t))

tm . 1 for all x and t. Note that the family (s̃t)t>0 is not required to have
any x-continuity properties.

Exercise 6. Again µ is a measure of order m. We want to show that there exists some
constant C > 0 such that for an arbitrary ball B centred at c with radius r we have

|Sµ(1Rn\10B)(x)− Sµ(1Rn\10B)(c)| ≤ C

for all x ∈ B.
For any u > 0 define the truncate cones Γu(x) := {(y, t) ∈ Γ(x) : t > u} and

Γu(x) := {(y, t) ∈ Γ(x) : t ≤ u}, and also the corresponding truncated conical square
functions Sµ,u and Suµ where the integration is carried over only the truncated cones. The
conical square function of a function f at a point x can be thought of as theL2(Rn+1

+ , dtdµ
tm+1 )-

norm of the function 1Γ(x)(y, t)θ
µ
t f(y). Using this point of view we have, for any s > 0,

that

|Sµ(1Rn\10B)(x)− Sµ(1Rn\10B)(c)|

≤
(∫ ∫

Rn+1
+

|1Γ(x)(y, t)θ
µ
t (1Rn\10B)(y)− 1Γ(c)(y, t)θ

µ
t (1Rn\10B)(y)|2dtdµ(y)

tm+1

) 1
2

≤
(∫ ∫

Rn+1
+

|1Γu(x)(y, t)θ
µ
t (1Rn\10B)(y)− 1Γu(c)(y, t)θ

µ
t (1Rn\10B)(y)|2dtdµ(y)

tm+1

) 1
2

+ Suµ(1Rn\10B)(x) + Suµ(1Rn\10B)(c).

(0.5)

(Here the first inequality was that in a normed space we have
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x − y‖ and

the last was just triangle inequality.) The point of this splitting is that for “small” t we can
use the hole in the support of the function, and for “big” t the two shifted cones suitably
cancel each other.
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Indeed, suppose (y, t) ∈ Γ(x). Then

|θµt (1Rn\10B)(y)| .
∫
Rn\10B

tα

(t+ |y − z|)m+α
dµ(z)

.
∫
Rn\10B

tα

(r + |y − z|)m+α
dµ(z) .

tα

rα
,

where we estimated the integral as in (0.1). We can use this for, say, t ≤ 10r, as

S10r
µ (1Rn\10B)(x)2 .

1

r2α

∫∫
Γ10r(x)

t2α
dt dµ(y)

tm+1

=
1

r2α

∫ 10r

0
t2α−1µ(B(x, t))

tm
dt .

(10r)2α

r2α
. 1,

because µ is of order m. So if we choose for example u = 10r in (0.5), then we see that the
last two terms there to be estimated are in control.

Looking at the first term in the right hand side of (0.5) which we still need to estimate,
we see that we have to integrate the function θµt (1Rn\10B)(y) over the set

(Γ10r(x) \ Γ10r(c)) ∪ (Γ10r(c) \ Γ10r(x))

⊂ {(y, t) ∈ Rn+1 : |y − c| ≥ 9r, t ∈ [|y − c| − r, |y − c|+ r]} =: A.

Combining this with the fact that |θµt (1Rn\10B)(y)| . 1 for all (y, t) by (0.1), we get∫ ∫
Rn+1

+

|1Γs(x)(y, t)θ
µ
t (1Rn\10B)(y)− 1Γs(c)(y, t)θ

µ
t (1Rn\10B)(y)|2dtdµ(y)

tm+1

.
∫ ∫

A

dtdµ(y)

tm+1
=

∫
Rn\B(c,9r)

∫ |y−c|+r
|y−c|−r

dt

tm+1
dµ(y)

∼
∫
Rn\B(c,9r)

r

|y − c|m+1
dµ(y) .

r

9r
. 1,

where a computation as in (0.1) was again used to estimate the integral. This completes the
proof for the conical square function.

Suppose then we have a vertical square function Vµ with a kernel (st)t>0 that satisfies
also the x-Hölder assumption. Similarly as with the conical square function we have

|Vµ(1Rn\10B)(x)− Vµ(1Rn\10B)(c)|

≤
(∫ ∞

2r
|θµt (1Rn\10B)(x)− θµt (1Rn\10B)(c)|2dt

t

) 1
2

+
(∫ 2r

0
|θµt (1Rn\10B)(x)|2dt

t

) 1
2

+
(∫ 2r

0
|θµt (1Rn\10B)(c)|2dt

t

) 1
2
.

Using again |θµt (1Rn\10B)(x)| . tα

rα for all x ∈ B and t > 0, we get(∫ 2r

0
|θµt (1Rn\10B)(x)|2dt

t

) 1
2

+
(∫ 2r

0
|θµt (1Rn\10B)(c)|2dt

t

) 1
2

.
(∫ 2r

0

t2α

r2α

dt

t

) 1
2
. 1.
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Finally, the x-continuity of the kernel gives for all t ≥ 2r that

|θµt (1Rn\10B)(x)− θµt (1Rn\10B)(c)|

=
∣∣∣ ∫

Rn
(st(x, y)− st(c, y))1Rn\10B(y)dµ(y)

∣∣∣
.
∫
Rn\10B

|x− c|α

(t+ |y − c|)m+α
dµ(y) .

rα

tα
,

and thus (∫ ∞
2r
|θµt (1Rn\10B)(x)− θµt (1Rn\10B)(c)|2dt

t

) 1
2

.
(∫ ∞

2r

r2α

t2α
dt

t

) 1
2
. 1.

This concludes the estimate for the vertical square function.


