Scaling limit of a sequence of functions

Suppose that for each value of the scaling parameter $L \in \mathbb{N}$ there is given a function $f_L(x) \in \mathbb{R}, x \in \mathbb{R}$.

Do the functions have a scaling limit?

 \ldots that is, a function F such that

$$F(\xi) = \lim_{L \to \infty} f_L(\xi L), \quad \xi \in \mathbb{R}$$

Trivial example:

Choose $F : \mathbb{R} \to \mathbb{R}$ and define $f_L(x) := F(x/L)$

Scaling Functions Why? Topology Distributions Example

2

$$F(\xi) = \lim_{L \to \infty} f_L(\xi L), \quad \xi \in \mathbb{R}$$

If all f_L are known, why bother looking at the limit F?

Typically used when f_L are not known explicitly but the limit F can be computed independently, for instance, by solving a differential equation.

Example:

Convergence in which sense?

$$F(\xi) = \lim_{L \to \infty} f_L(\xi L), \quad \xi \in \mathbb{R}$$

The goal is to "retain only relevant degrees of freedom".

- \Rightarrow The choice of the function topology for the limit can be crucial. Some standard alternatives:
 - 1 Pointwise convergence: bad, does not preserve local densities. $f_L(x) := L\mathbb{1}(0 < x < 1) \Rightarrow f_L(\xi L) = L\mathbb{1}(0 < \xi < L^{-1}) \to 0$
 - **2** Uniform convergence: usually too strong. If all f_L are continuous and decay at infinity, then so must the limit F.
 - 3 L¹_{loc}-convergence: better, preserves local densities and allows forgetting about troublesome things (like boundary conditions) "at infinity". However, still cannot handle "concentration of mass": f_L(x) := L1(0<x<1) has no limit.

Convergence as distributions

The scaling limit as a distribution: For all testfunctions φ require $\langle F, \varphi \rangle = \lim_{L \to \infty} \langle f_L, \varphi_L \rangle$, where $\varphi_L(x) := \frac{1}{L} \varphi(x/L)$

Scaling

- If $F \in L^1_{loc}$, we define here $\langle F, \varphi \rangle := \int_{\mathbb{R}} d\xi F(\xi) \varphi(\xi)$. Then any scaling limit F of f_L in L^1_{loc} is a scaling limit as a distribution.
- Using testfunctions which are close to normalized characteristic functions, we thus have for $\xi_0 \in \mathbb{R}$, $\delta > 0$,

$$\frac{1}{2\delta} \int_{|\xi-\xi_0|<\delta} \mathrm{d}\xi \, F(\xi) \approx \frac{1}{2\delta L} \int_{|\xi-\xi_0L|<\delta L} \mathrm{d}x \, f_L(x)$$

 \Rightarrow "local averages at the scale $L^{\prime\prime}$ eventually coincide.

■ In this way, concentration of mass is resolved as convergence to a Dirac δ -measure: $f_L(x) := L \mathbb{1}(0 < x < 1) \rightarrow \delta(x)$

An example from non-equilibrium statistical mechanics 5

How a macroscopic dynamical system of "spatial size" $L \gg 1$ with normal thermal conductivity is supposed to behave:

t = 0 "Typical" *initial state* (deterministic or stochastic)

 \downarrow (thermalization)

 $t=O(L^{\varepsilon})$

 $t = O(L^2)$

Local equilibrium state (stochastic): local statistics given by a thermal state (labeled by T(x, t), ...)

 $\downarrow \qquad \qquad \downarrow \qquad (hydrodynamics)$

Relaxation towards equilibrium, hydrodynamics / Fourier's law