Matematiikan ja tilastotieteen laitos
Fourier analyysi
Review problems
(These are extra and voluntary !!)
Aleksis Koski will be on call in his office A415 on Monday 19th October at 12-14, to give help/answers/advice on these problems.

1. Suppose $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence in $L^{1}[-\pi, \pi]$ and $f \in L^{1}[-\pi, \pi]$ such that

$$
\int_{-\pi}^{\pi}\left|f_{k}(x)-f(x)\right| d x \xrightarrow{k \rightarrow \infty} 0 .
$$

Show that $\hat{f}_{k}(n) \rightarrow \hat{f}(n)$ uniformly with respect to n as $k \rightarrow \infty$.
2. Suppose $f(x)$ is a 2π-periodic function such that $f(x)=0$ for $-\pi \leq x \leq 0$ and $f(x)=\sin (1 / x)$ for $0<x \leq \pi$. Show that

$$
\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|=\infty
$$

i.e. the Fourier series of the function f does not converge absolutely.
3. Let $f \in L^{1}(\mathbb{R})$ be a 2π-periodic function satisfying $f(x+\pi)=-f(x)$ for every $x \in[-\pi, \pi]$.

Show that the even Fourier coefficients of f are zero, i.e. prove that $\hat{f}(2 n)=0$ for every $n \in \mathbb{Z}$.
4. Let $N \in \mathbb{N}$. Show that there exists a function $f \in L^{1}[-\pi, \pi]$ such that $F_{N} * f=0$.
5. If a function $f \in L^{1}(-\pi, \pi)$ has a derivative at a point $x_{0} \in[-\pi, \pi]$, show that then the Fourier series of f converges at x_{0}, and has value $f\left(x_{0}\right)$.
6. Suppose $f \in L^{2}[-\pi, \pi]$ is a function for which

$$
\sum_{n=-\infty}^{\infty} n^{2}|\hat{f}(n)|^{2}<\infty
$$

Use the Riesz-Fisher theorem to show that there is a function $g \in L^{2}[-\pi, \pi]$ such that $\hat{g}(n)=\operatorname{in} \hat{f}(n), n \in \mathbb{Z}$, and that g satisfies

$$
(*) \quad \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{\phi^{\prime}(x)} d x=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) \overline{\phi(x)} d x
$$

for every 2π-periodic function $\phi \in C^{\infty}(\mathbb{R})$.
[Note: a function g satisfying $(*)$ for all $\phi \in C_{\#}^{\infty}(-\pi, \pi)$ is called a weak derivative of f.]
7. Determine the Fourier coefficients of the function $f(x)=|x|, x \in[-\pi, \pi]$, and use these and f to show that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}
$$

8. Suppose $\left\{A_{n}(x)\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}(x)\right\}_{n \in \mathbb{N}}$ are families of 2π-periodic good kernels. For which numbers $\alpha, \beta \in \mathbb{C}$ is

$$
\left\{\alpha A_{n}(x)+\beta B_{n}(x)\right\}_{n \in \mathbb{N}}
$$

a family of good kernels ? Justify your answer.

