Department of Mathematics and Statistics
 Fourier analysis
 Exercise 8
 Nov. 16, 2015

1. If $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, show that $\left(1+|x|^{2}\right)^{-1} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
2. Let $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be defined by $f(x)=\sin \left(e^{|x|^{2}}\right) e^{-|x|^{2}}$. Is $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$?
3. (i) Using the identity $\int_{\mathbb{R}^{d}} f(x) \widehat{g}(x) d x=\int_{\mathbb{R}^{d}} \widehat{f}(x) g(x) d x$
(c.f. Proposition 9.7) and properties of Schwarz functions, show that

$$
\begin{equation*}
(2 \pi)^{d} \int_{\mathbb{R}^{d}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{d}} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d \xi \tag{1}
\end{equation*}
$$

whenever $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(ii) Using the density of $\mathcal{S}\left(\mathbb{R}^{d}\right)$ in $L^{2}\left(\mathbb{R}^{d}\right)$, deduce from (i) that Parseval's identity (1) holds for every $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$.
4. If $h \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, show that the differential equation

$$
\Delta f-f=h, \quad \Delta=\left(\frac{\partial}{\partial x_{1}}\right)^{2}+\cdots+\left(\frac{\partial}{\partial x_{d}}\right)^{2}
$$

has always a solution $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
[Hint: Determine $\mathcal{F}(\Delta f)$ and take Fourier transform of the equation. The first problem might be useful.]
5. Prove the Heisenberg uncertainty principle:

If $f \in \mathcal{S}(\mathbb{R})$ and $\int_{-\infty}^{\infty}|f(x)|^{2} d x=1$, then

$$
\frac{\pi}{2} \leq \int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x \int_{\mathbb{R}}|\xi|^{2}|\widehat{f}(\xi)|^{2} d \xi
$$

[Hint: Express the integral $\int_{-\infty}^{\infty} x \frac{d}{d x}[f(x) \overline{f(x)}] d x$ in two different ways.]

